Recommended:Predicting Ocean Waves along the U.S. East Coast During Energetic Winter Storms:...

2018 ◽  
Author(s):  
Anonymous
Keyword(s):  
2018 ◽  
Author(s):  
Mohammad Nabi Allahdadi ◽  
Ruoying He ◽  
Vincent S. Neary

Abstract. The performance of two methods for quantifying whitecapping dissipation incorporated in the SWAN wave model is evaluated for waves generated along and off the U.S. East Coast under energetic winter storms with a predominantly westerly wind. Parameterizing the whitecapping effect can be done using the Komen-type schemes, which are based on mean spectral parameters, or the saturation-based (SB) approach of van der Westhuysen (2007), which is based on local wave parameters and the saturation level concept of the wave spectrum (we use Komen and Westhuysen to denote these two approaches). Observations of wave parameters and frequency spectra at four NDBC buoys are used to evaluate simulation results. Model-data comparisons show that when using the default parameters in SWAN, both Komen and Westhuysen methods underestimate wave height. Simulations of mean wave period using the Komen method agree with observations, but those using the Westhuysen method are substantially lower. Examination of source terms shows that the Westhuysen method underestimates the total energy transferred into the wave action equations, especially in the lower frequency bands that contain higher spectral energy. Several causes for this underestimation are identified. The primary reason is the difference between the wave growth conditions along the East Coast during winter storms and the conditions used for the original whitecapping formula calibration. In addition, some deficiencies in simulation results are caused along the coast by the slanting fetch effect that adds low-frequency components to the 2-D wave spectra. These components cannot be simulated partly or entirely by available wind input formulations. Further, the effect of boundary layer instability that is not considered in the Komen and Westhuysen whitecapping wind input formulas may cause additional underestimation.


Ocean Science ◽  
2019 ◽  
Vol 15 (3) ◽  
pp. 691-715 ◽  
Author(s):  
Mohammad Nabi Allahdadi ◽  
Ruoying He ◽  
Vincent S. Neary

Abstract. The performance of two methods for quantifying whitecapping dissipation incorporated in the Simulating Waves Nearshore (SWAN) wave model is evaluated for waves generated along and off the US east coast under energetic winter storms with a predominantly westerly wind. Parameterizing the whitecapping effect can be done using the Komen-type schemes, which are based on mean spectral parameters, or the saturation-based (SB) approach of van der Westhuysen (2007), which is based on local wave parameters and the saturation level concept of the wave spectrum (we use “Komen” and “Westhuysen” to denote these two approaches). Observations of wave parameters and frequency spectra at four National Data Buoy Center (NDBC) buoys are used to evaluate simulation results. Model–data comparisons show that when using the default parameters in SWAN, both Komen and Westhuysen methods underestimate wave height. Simulations of mean wave period using the Komen method agree with observations, but those using the Westhuysen method are substantially lower. Examination of source terms shows that the Westhuysen method underestimates the total energy transferred into the wave action equations, especially in the lower frequency bands that contain higher spectral energy. Several causes for this underestimation are identified. The primary reason is the difference between the wave growth conditions along the east coast during winter storms and the conditions used for the original whitecapping formula calibration. In addition, some deficiencies in simulation results are caused along the coast by the “slanting fetch” effect that adds low-frequency components to the 2-D wave spectra. These components cannot be simulated partly or entirely by available source terms (wind input, whitecapping, and quadruplet) in models and their interaction. Further, the effect of boundary layer instability that is not considered in the Komen and Westhuysen whitecapping wind input formulas may cause additional underestimation.


2019 ◽  
Vol 100 (7) ◽  
pp. 1329-1345 ◽  
Author(s):  
Gregory Dusek ◽  
Christopher DiVeglio ◽  
Louis Licate ◽  
Lorraine Heilman ◽  
Katie Kirk ◽  
...  

AbstractMeteotsunamis are atmospherically forced ocean waves with characteristics similar to seismic tsunamis. Several recent hazardous meteotsunamis resulted in damage and injuries along U.S. coastlines, such that the National Oceanic and Atmospheric Administration (NOAA) is investigating ways to detect and forecast meteotsunamis to provide advance warning. Better understanding meteotsunami occurrence along U.S. coastlines is a necessary step to pursue these objectives. Here a meteotsunami climatology of the U.S. East Coast is presented. The climatology relies on a wavelet analysis of 6-min water-level observations from 125 NOAA tide gauges from 1996 to 2017. A total of 548 meteotsunamis, or about per year, were identified and assessed using this approach along the U.S. East Coast. There were a total of 30 instances when gauges observed waves of more than 0.6 m, which is assumed to be a potentially impactful event, and several cases with wave heights more than 1 m. Tide gauges along the open coast observed the most frequent events, including more than five events per year at Atlantic City, New Jersey; Duck, North Carolina; and Myrtle Beach, South Carolina. The largest waves were observed by gauges in estuaries that amplified the meteotsunami signal, such as those in Providence, Rhode Island, and Port Canaveral, Florida. Seasonal trends indicate that meteotsunamis occur most frequently in the winter and summer months, especially July. This work supports future meteotsunami detection and warning capabilities at NOAA, including the development of an impact catalog to aid National Weather Service forecasters.


2015 ◽  
Vol 109 (4) ◽  
pp. 735-749 ◽  
Author(s):  
LAURA VALENTINI

In late 2012, Hurricane Sandy hit the East Coast of the U.S., causing much suffering and devastation. Those who could have easily helped Sandy's victims had a duty to do so. But was this a rightfully enforceable duty of justice, or a nonenforceable duty of beneficence? The answer to this question is often thought to depend on the kind of help offered: the provision of immediate bodily services is not enforceable; the transfer of material resources is. I argue that this double standard is unjustified, and defend a version of what I call “social samaritanism.” On this view, within political communities, the duty to help the needy—whether via bodily services or resource transfers—is always an enforceable demand of justice, except when the needy are reckless; across independent political communities, it is always a matter of beneficence. I defend this alternative double standard, and consider its implications for the case of Sandy.


Eos ◽  
2016 ◽  
Vol 97 ◽  
Author(s):  
Sarah Stanley

New research reveals the relative importance of oceanic and atmospheric processes in year-to-year changes in ocean temperature along the Middle Atlantic Bight.


Sign in / Sign up

Export Citation Format

Share Document