us east coast
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 13)

H-INDEX

21
(FIVE YEARS 2)

Ocean Science ◽  
2022 ◽  
Vol 18 (1) ◽  
pp. 67-88
Author(s):  
Alizée Roobaert ◽  
Laure Resplandy ◽  
Goulven G. Laruelle ◽  
Enhui Liao ◽  
Pierre Regnier

Abstract. The temporal variability of the sea surface partial pressure of CO2 (pCO2) and the underlying processes driving this variability are poorly understood in the coastal ocean. In this study, we tailor an existing method that quantifies the effects of thermal changes, biological activity, ocean circulation and freshwater fluxes to examine seasonal pCO2 changes in highly variable coastal environments. We first use the Modular Ocean Model version 6 (MOM6) and biogeochemical module Carbon Ocean Biogeochemistry And Lower Trophics version 2 (COBALTv2) at a half-degree resolution to simulate coastal CO2 dynamics and evaluate them against pCO2 from the Surface Ocean CO2 Atlas database (SOCAT) and from the continuous coastal pCO2 product generated from SOCAT by a two-step neuronal network interpolation method (coastal Self-Organizing Map Feed-Forward neural Network SOM-FFN, Laruelle et al., 2017). The MOM6-COBALT model reproduces the observed spatiotemporal variability not only in pCO2 but also in sea surface temperature, salinity and nutrients in most coastal environments, except in a few specific regions such as marginal seas. Based on this evaluation, we identify coastal regions of “high” and “medium” agreement between model and coastal SOM-FFN where the drivers of coastal pCO2 seasonal changes can be examined with reasonable confidence. Second, we apply our decomposition method in three contrasted coastal regions: an eastern (US East Coast) and a western (the Californian Current) boundary current and a polar coastal region (the Norwegian Basin). Results show that differences in pCO2 seasonality in the three regions are controlled by the balance between ocean circulation and biological and thermal changes. Circulation controls the pCO2 seasonality in the Californian Current; biological activity controls pCO2 in the Norwegian Basin; and the interplay between biological processes and thermal and circulation changes is key on the US East Coast. The refined approach presented here allows the attribution of pCO2 changes with small residual biases in the coastal ocean, allowing for future work on the mechanisms controlling coastal air–sea CO2 exchanges and how they are likely to be affected by future changes in sea surface temperature, hydrodynamics and biological dynamics.


2021 ◽  
Author(s):  
Carol Lee ◽  
Shruthi Mangalaganesh ◽  
Laurence OW Wilson ◽  
Michael J Kuiper ◽  
Trevor W Drew ◽  
...  

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has produced five variants of concern (VOC) to date. The important Spike mutation N501Y is common to Alpha, Beta, Gamma and Omicron VOC, while the P681R is key to the spread of Delta. We have analysed circa 4.2 million SARS-CoV-2 genome sequences from the largest repository Global Initiative on Sharing All Influenza Data (GISAID) and demonstrated that these two mutations have cooccurred on the Spike D614G mutation background at least 3,678 times from 17 October 2020 to 1 November 2021. In contrast, the Y501-H681 combination, which is common to Alpha and Omicron VOC, is present in circa 1.1 million entries. Two-thirds of the 3,678 cooccurrences were in France, Turkey or US (East Coast), and the rest across 57 other countries. 55.5% and 4.6% of the cooccurrences were Alpha Q.4 and Gamma P.1.8 sub-lineages acquiring the P681R; 10.7% and 3.8% were Delta B.1.617.2 lineage and AY.33 sub-lineage acquiring the N501Y; the remaining 10.2% were in other variants. Despite the selective advantages individually conferred by N501Y and P681R, the Y501-R681 combination counterintuitively did not outcompete other variants in every instance we have examined. While this is a relief to worldwide public health efforts, in vitro and in vivo studies are urgently required in the absence of a strong in silico explanation for this phenomenon. This study demonstrates a pipeline to analyse combinations of key mutations from public domain information in a systematic manner and provide early warnings of spread.


2021 ◽  
Vol 170 ◽  
pp. 104009
Author(s):  
Patrick Barrineau ◽  
Rens Janmaat ◽  
Tim Kana
Keyword(s):  
The Us ◽  

2021 ◽  
Vol 21 (21) ◽  
pp. 16121-16141
Author(s):  
Hossein Dadashazar ◽  
Majid Alipanah ◽  
Miguel Ricardo A. Hilario ◽  
Ewan Crosbie ◽  
Simon Kirschler ◽  
...  

Abstract. North American pollution outflow is ubiquitous over the western North Atlantic Ocean, especially in winter, making this location a suitable natural laboratory for investigating the impact of precipitation on aerosol particles along air mass trajectories. We take advantage of observational data collected at Bermuda to seasonally assess the sensitivity of aerosol mass concentrations and volume size distributions to accumulated precipitation along trajectories (APT). The mass concentration of particulate matter with aerodynamic diameter less than 2.5 µm normalized by the enhancement of carbon monoxide above background (PM2.5/ΔCO) at Bermuda was used to estimate the degree of aerosol loss during transport to Bermuda. Results for December–February (DJF) show that most trajectories come from North America and have the highest APTs, resulting in a significant reduction (by 53 %) in PM2.5/ΔCO under high-APT conditions (> 13.5 mm) relative to low-APT conditions (< 0.9 mm). Moreover, PM2.5/ΔCO was most sensitive to increases in APT up to 5 mm (−0.044 µg m−3 ppbv−1 mm−1) and less sensitive to increases in APT over 5 mm. While anthropogenic PM2.5 constituents (e.g., black carbon, sulfate, organic carbon) decrease with high APT, sea salt, in contrast, was comparable between high- and low-APT conditions owing to enhanced local wind and sea salt emissions in high-APT conditions. The greater sensitivity of the fine-mode volume concentrations (versus coarse mode) to wet scavenging is evident from AErosol RObotic NETwork (AERONET) volume size distribution data. A combination of GEOS-Chem model simulations of the 210Pb submicron aerosol tracer and its gaseous precursor 222Rn reveals that (i) surface aerosol particles at Bermuda are most impacted by wet scavenging in winter and spring (due to large-scale precipitation) with a maximum in March, whereas convective scavenging plays a substantial role in summer; and (ii) North American 222Rn tracer emissions contribute most to surface 210Pb concentrations at Bermuda in winter (∼ 75 %–80 %), indicating that air masses arriving at Bermuda experience large-scale precipitation scavenging while traveling from North America. A case study flight from the ACTIVATE field campaign on 22 February 2020 reveals a significant reduction in aerosol number and volume concentrations during air mass transport off the US East Coast associated with increased cloud fraction and precipitation. These results highlight the sensitivity of remote marine boundary layer aerosol characteristics to precipitation along trajectories, especially when the air mass source is continental outflow from polluted regions like the US East Coast.


2021 ◽  
Vol 118 (41) ◽  
pp. e2105636118
Author(s):  
Justin T. Maxwell ◽  
Joshua C. Bregy ◽  
Scott M. Robeson ◽  
Paul A. Knapp ◽  
Peter T. Soulé ◽  
...  

The impacts of inland flooding caused by tropical cyclones (TCs), including loss of life, infrastructure disruption, and alteration of natural landscapes, have increased over recent decades. While these impacts are well documented, changes in TC precipitation extremes—the proximate cause of such inland flooding—have been more difficult to detect. Here, we present a latewood tree-ring–based record of seasonal (June 1 through October 15) TC precipitation sums (ΣTCP) from the region in North America that receives the most ΣTCP: coastal North and South Carolina. Our 319-y-long ΣTCP reconstruction reveals that ΣTCP extremes (≥0.95 quantile) have increased by 2 to 4 mm/decade since 1700 CE, with most of the increase occurring in the last 60 y. Consistent with the hypothesis that TCs are moving slower under anthropogenic climate change, we show that seasonal ΣTCP along the US East Coast are positively related to seasonal average TC duration and TC translation speed.


2021 ◽  
Vol 288 (1950) ◽  
Author(s):  
Stephan B. Munch ◽  
Who Seung Lee ◽  
Matthew Walsh ◽  
Thomas Hurst ◽  
Ben A. Wasserman ◽  
...  

Transgenerational plasticity (TGP) occurs when phenotypes are shaped by the environment in both the current and preceding generations. Transgenerational responses to rainfall, CO 2 and temperature suggest that TGP may play an important role in how species cope with climate change. However, little is known about how TGP will evolve as climate change continues. Here, we provide a quantitative test of the hypothesis that the predictability of the environment influences the magnitude of the transgenerational response. To do so, we take advantage of the latitudinal decrease in the predictability of temperatures in near shore waters along the US East Coast. Using sheepshead minnows ( Cyprinodon variegatus ) from South Carolina, Maryland, and Connecticut, we found the first evidence for a latitudinal gradient in thermal TGP. Moreover, the degree of TGP in these populations depends linearly on the decorrelation time for temperature, providing support for the hypothesis that thermal predictability drives the evolution of these traits.


2021 ◽  
Author(s):  
Stephan Toni Grilli ◽  
Maryam Mohammadpour ◽  
Lauren Schambach ◽  
Annette Grilli

Abstract We model the coastal hazard caused by tsunamis along the US East Coast (USEC) for far-field coseismic sources originated in the A\c{c}ores Convergence Zone (ACZ), and the Puerto Rico Trench (PRT)/Caribbean Arc area. In earlier work, similar modeling was performed for probable maximum tsunamis (PMTs) resulting from coseismic, submarine mass failure and volcanic collapse sources in the Atlantic Ocean basin, based on which tsunami inundation maps were developed in high hazard areas of the USEC. Here, in preparation for a future Probabilistic Tsunami Hazard Analysis (PTHA), we model a collection of 18 coseismic sources with magnitude ranging from M8 to M9 and return periods estimated in the 100-2,000 year range. Most sources are hypothetical, based on the seismo-tectonic data known for the considered areas. However, the largest sources from the ACZ, which includes the region of the Madeira Tore Rise, are parameterized as repeats of the 1755 M8.6-9 (Lisbon) earthquake and tsunami using information from many studies published on this event, which is believed to have occurred east of the MTR. Many other large events have been documented to have occurred in this area in the past 2,000 years. There have also been many large historical coseismic tsunamis in and near the Puerto Rico Trench (PRT) area, triggered by earthquakes with the largest in the past 225 years having an estimated M8.1 magnitude. In this area, coseismic sources are parameterized based on information from a 2019 USGS Powell Center expert, attended by the first author, and a collection of SIFT subfaults for the area (Gica et al., 2008). For each source, regional tsunami hazard assessment is performed along the USEC at a coarse 450 m resolution by simulating tsunami propagation to the USEC with FUNWAVE-TVD (a nonlinear and dispersive (2D) Boussinesq model), in nested grids. Tsunami coastal hazard is represented by four metrics, computed along the 5 m isobath, which quantify inundation, navigation, structural, and evacuation hazards: (1) maximum surface elevation; (2) maximum current velocity; (3) maximum momentum force; and (4) tsunami arrival time. Overall, the first three factors are larger, the larger the source magnitude, and their alongshore variation shows similar patterns of higher and lower values, due to bathymetric control from the wide USEC shelf, causing similar wave refraction patterns of focusing/defocusing for each tsunami. The fourth factor differs mostly between sources from each area (ACZ and PRT), but less so among sources from the same area; its inverse is used as a measure of increased hazard associated with short warning/evacuation times. Finally, a new tsunami intensity index (TII) is computed, that attaches a score to each metric within 5 hazard intensity classes selected for each factor, reflecting low, medium low, medium, high and highest hazard, and is computed as a weighted average of these scores (weights can be selected to reinforce the effect of certain metrics). For each source, the TII provides an overall tsunami hazard intensity along the USEC coast that allows both a comparison among sources and a quantification of tsunami hazard as a function of the source return period. At the most impacted areas of the USEC (0.1 percentile), we find that tsunami hazard in the 100-500 year return period range is commensurate with that posed by category 3-5 tropical cyclones, taking into account the larger current velocities and forces caused by tsunami waves. Based on results of this work, high-resolution inundation PTHA maps will be developed in the future, similar to the PMT maps, in areas identified to have higher tsunami hazard, using more levels of nested grids, to achieve a 10-30 m resolution along the coast.


2020 ◽  
Vol 5 (3) ◽  
pp. 1191-1210 ◽  
Author(s):  
Tobias Ahsbahs ◽  
Galen Maclaurin ◽  
Caroline Draxl ◽  
Christopher R. Jackson ◽  
Frank Monaldo ◽  
...  

Abstract. We present the first synthetic aperture radar (SAR) offshore wind atlas of the US East Coast from Georgia to the Canadian border. Images from RADARSAT-1, Envisat, and Sentinel-1A/B are processed to wind maps using the geophysical model function (GMF) CMOD5.N. Extensive comparisons with 6008 collocated buoy observations of the wind speed reveal that biases of the individual systems range from −0.8 to 0.6 m s−1. Unbiased wind retrievals are crucial for producing an accurate wind atlas, and intercalibration of the SAR observations is therefore applied. Wind retrievals from the intercalibrated SAR observations show biases in the range of to −0.2 to 0.0 m s−1, while at the same time improving the root-mean-squared error from 1.67 to 1.46 m s−1. The intercalibrated SAR observations are, for the first time, aggregated to create a wind atlas at the height 10 m a.s.l. (above sea level). The SAR wind atlas is used as a reference to study wind resources derived from the Wind Integration National Dataset Toolkit (WTK), which is based on 7 years of modelling output from the Weather Research and Forecasting (WRF) model. Comparisons focus on the spatial variation in wind resources and show that model outputs lead to lower coastal wind speed gradients than those derived from SAR. Areas designated for offshore wind development by the Bureau of Ocean Energy Management are investigated in more detail; the wind resources in terms of the mean wind speed show spatial variations within each designated area between 0.3 and 0.5 m s−1 for SAR and less than 0.2 m s−1 for the WTK. Our findings indicate that wind speed gradients and variations might be underestimated in mesoscale model outputs along the US East Coast.


2020 ◽  
Vol 641 ◽  
pp. 13-24
Author(s):  
AE Fowler ◽  
AMH Blakeslee ◽  
J Canning-Clode ◽  
MF Repetto ◽  
GM Ruiz ◽  
...  

Invasion dynamics are influenced by both vector operation and propagule pressure. Which propagules are entrained in a vector depends on how, where, and when a vector operates, but the timing and effects of vector operations on species delivery patterns is poorly resolved. Using the live marine baitworm trade, we tested vector selectivity across 3 boreal seasons (summer 2011, fall 2011, and spring 2012). We compared macroinvertebrate assemblages at the source (Maine, US east coast field) and in baitboxes upon delivery (Mid-Atlantic distributors, US east coast) and quantified live and dead biota to test for interactive effects of season and vector stage (i.e. source vs. destination) on per capita abundance, species richness, diversity, functional richness, and community composition. In all, we identified 46262 hitchhiking macro-organisms from 56 distinct taxa. Among live biota, taxonomic richness, functional group richness, and abundance differed by vector stage and season. Community composition showed seasonality for functional groups, but not for taxonomic groups. Vector stage affected dead community composition more than season, implying that vector operations (i.e. handling at source and during shipping) filter species transfers differentially. Dead communities were typically composed of the most abundant live organisms in the same baitboxes, emphasizing how important propagule pressure is to successful transport. Some combinations of 5 key functional traits (body size, feeding mode, growth form, modularity, and motility) were associated with increased survival during vector transfer. Successful species transfers are correlated with specific functional traits and propagule pressure, both of which are influenced by seasonal variation.


Sign in / Sign up

Export Citation Format

Share Document