scholarly journals The dynamic connection of the Indonesian Throughflow, South Indian Ocean Countercurrent and the Leeuwin Current

2015 ◽  
Vol 12 (5) ◽  
pp. 2231-2256
Author(s):  
E. Lambert ◽  
D. Le Bars ◽  
W. P. M. de Ruijter

Abstract. East of Madagascar, wind and surface buoyancy fluxes reinforce each other, leading to frontogenesis, outcrop and an eastward along-front flow: the South Indian Ocean Countercurrent (SICC). In the east the Leeuwin Current (LC) is a unique eastern boundary current which flows poleward along Australia. It is often described as a regional coastal current forced by an off-shore meridional density gradient or a sea surface slope, yet little is known of the forcing and dynamics that control these open ocean meridional gadients. To complete this understanding, we make use of both an ocean general circulation model and a conceptual two-layer model. The SICC impinges on west Australia and adds to a sea level slope and a southward geostrophic coastal jet: the Leeuwin Current. The SICC and the LC are thus dynamically connected. An observed transport maximum of the LC around 22° S is directly related to this impingement of the SICC. The circulation of the Indonesian Throughflow (ITF) through the Indian Ocean appears to be partly trapped in the upper layer north of the outcrop line and is redirected along this outcrop line to join the eastward flow of the SICC. Shutdown of the ITF in both models strongly decreases the Leeuwin Current transport and breaks the connection between the LC and SICC. In this case, most of the SICC was found to reconnect to the internal gyre circulation in the Indian Ocean. The Indonesian Throughflow, South Indian Ocean Countercurrent and the Leeuwin Current are thus dynamically coupled.

Ocean Science ◽  
2016 ◽  
Vol 12 (3) ◽  
pp. 771-780 ◽  
Author(s):  
Erwin Lambert ◽  
Dewi Le Bars ◽  
Wilhelmus P. M. de Ruijter

Abstract. East of Madagascar, the shallow “South Indian Ocean Counter Current (SICC)” flows from west to east across the Indian Ocean against the direction of the wind-driven circulation. The SICC impinges on west Australia and enhances the sea level slope, strengthening the alongshore coastal jet: the Leeuwin Current (LC), which flows poleward along Australia. An observed transport maximum of the LC around 22° S can likely be attributed to this impingement of the SICC. The LC is often described as a regional coastal current that is forced by an offshore meridional density gradient or sea surface slope. However, little is known about the controls of these open-ocean gradients. The regional circulation system is embedded in the subtropical “super gyre” that connects the Indo-Pacific via the Tasman Gateway and the Indonesian passages. The Indonesian Throughflow (ITF) circulates through the Indian Ocean back into the Pacific south of Australia. This return pathway appears to be partly trapped in the upper layer north of an outcrop line. It is redirected along this outcrop line and joins the eastward flow of the SICC. To study the connection of the basin-scale and the inter-ocean-scale dynamics, we apply both an ocean general circulation model and a conceptual two-layer model. Shutdown of the ITF in the models leads to a large decrease in Leeuwin Current transport. Most of the SICC was found to then reconnect to the internal gyre circulation in the Indian Ocean. ITF, SICC and LC thus appear to be dynamically connected.


2016 ◽  
Vol 29 (17) ◽  
pp. 6085-6108 ◽  
Author(s):  
Toshiaki Shinoda ◽  
Weiqing Han ◽  
Tommy G. Jensen ◽  
Luis Zamudio ◽  
E. Joseph Metzger ◽  
...  

Abstract Previous studies indicate that equatorial zonal winds in the Indian Ocean can significantly influence the Indonesian Throughflow (ITF). During the Cooperative Indian Ocean Experiment on Intraseasonal Variability (CINDY)/Dynamics of the Madden–Julian Oscillation (DYNAMO) field campaign, two strong MJO events were observed within a month without a clear suppressed phase between them, and these events generated exceptionally strong ocean responses. Strong eastward currents along the equator in the Indian Ocean lasted more than one month from late November 2011 to early January 2012. The influence of these unique MJO events during the field campaign on ITF variability is investigated using a high-resolution (1/25°) global ocean general circulation model, the Hybrid Coordinate Ocean Model (HYCOM). The strong westerlies associated with these MJO events, which exceed 10 m s−1, generate strong equatorial eastward jets and downwelling near the eastern boundary. The equatorial jets are realistically simulated by the global HYCOM based on the comparison with the data collected during the field campaign. The analysis demonstrates that sea surface height (SSH) and alongshore velocity anomalies at the eastern boundary propagate along the coast of Sumatra and Java as coastal Kelvin waves, significantly reducing the ITF transport at the Makassar Strait during January–early February. The alongshore velocity anomalies associated with the Kelvin wave significantly leads SSH anomalies. The magnitude of the anomalous currents at the Makassar Strait is exceptionally large because of the unique feature of the MJO events, and thus the typical seasonal cycle of ITF could be significantly altered by strong MJO events such as those observed during the CINDY/DYNAMO field campaign.


2021 ◽  
pp. 1-52
Author(s):  
Ayumu Miyamoto ◽  
Hisashi Nakamura ◽  
Takafumi Miyasaka ◽  
Yu Kosaka

AbstractOver the South Indian Ocean, the coupled system of the subtropical Mascarene high and lowlevel clouds exhibits marked seasonality. To investigate this seasonality, the present study assesses radiative impacts of low-level clouds on the summertime Mascarene high with a coupled general circulation model. Comparison between a fully coupled control simulation and a “no low-cloud simulation,” where the radiative effects of low-level clouds are artificially turned off, demonstrates that they act to reinforce the Mascarene high. Their impacts are so significant that the summertime Mascarene high almost disappears in the no low-cloud experiment, suggesting their essential role in the existence of the summertime Mascarene high. As the primary mechanism, lowered seasurface temperature by the cloud albedo effect suppresses deep convective precipitation, inducing a Matsuno-Gill type response that reinforces the high, as verified through an atmospheric dynamical model diagnosis. Associated reduction of high-top clouds, as well as increased low-level clouds, augments in-atmosphere radiative cooling, which further reinforces the high. The present study reveals that low-level clouds constitute a tight positive feedback system with the subtropical high via sea-surface temperature over the summertime South Indian Ocean.


2021 ◽  
Vol 51 (5) ◽  
pp. 1595-1609
Author(s):  
Motoki Nagura ◽  
Michael J. McPhaden

AbstractThis study examines interannual variability in sea surface height (SSH) at southern midlatitudes of the Indian Ocean (10°–35°S). Our focus is on the relative role of local wind forcing and remote forcing from the equatorial Pacific Ocean. We use satellite altimetry measurements, an atmospheric reanalysis, and a one-dimensional wave model tuned to simulate observed SSH anomalies. The model solution is decomposed into the part driven by local winds and that driven by SSH variability radiated from the western coast of Australia. Results show that variability radiated from the Australian coast is larger in amplitude than variability driven by local winds in the central and eastern parts of the south Indian Ocean at midlatitudes (between 19° and 33°S), whereas the influence from eastern boundary forcing is confined to the eastern basin at lower latitudes (10° and 17°S). The relative importance of eastern boundary forcing at midlatitudes is due to the weakness of wind stress curl anomalies in the interior of the south Indian Ocean. Our analysis further suggests that SSH variability along the west coast of Australia originates from remote wind forcing in the tropical Pacific, as is pointed out by previous studies. The zonal gradient of SSH between the western and eastern parts of the south Indian Ocean is also mostly controlled by variability radiated from the Australian coast, indicating that interannual variability in meridional geostrophic transport is driven principally by Pacific winds.


2005 ◽  
Vol 35 (7) ◽  
pp. 1206-1222 ◽  
Author(s):  
Yann Friocourt ◽  
Sybren Drijfhout ◽  
Bruno Blanke ◽  
Sabrina Speich

Abstract The northward export of intermediate water from Drake Passage is investigated in two global ocean general circulation models (GCMs) by means of quantitative particle tracing diagnostics. This study shows that a total of about 23 Sv (Sv ≡ 106 m3 s−1) is exported from Drake Passage to the equator. The Atlantic and Pacific Oceans are the main catchment basins with 7 and 15 Sv, respectively. Only 1–2 Sv of the water exported to the Atlantic equator follow the direct cold route from Drake Passage without entering the Indian Ocean. The remainder loops first into the Indian Ocean subtropical gyre and flows eventually into the Atlantic Ocean by Agulhas leakage. The authors assess the robustness of a theory that relates the export from Drake Passage to the equator to the wind stress over the Southern Ocean. Our GCM results are in reasonable agreement with the theory that predicts the total export. However, the theory cannot be applied to individual basins because of interocean exchanges through the “supergyre” mechanism and other nonlinear processes such as the Agulhas rings. The export of water from Drake Passage starts mainly as an Ekman flow just northward of the latitude band of the Antarctic Circumpolar Current south of South America. Waters quickly subduct and are transferred to the ocean interior as they travel equatorward. They flow along the eastern boundaries in the Sverdrup interior and cross the southern basins northwestward to reach the equator within the western boundary current systems.


Sign in / Sign up

Export Citation Format

Share Document