scholarly journals Towards worldwide height unification using ocean information

Author(s):  
P. L. Woodworth ◽  
C. W. Hughes

Abstract. This paper describes how we are contributing to worldwide height system unification (WHSU) by using ocean models together with sea level (tide gauge and altimeter) information, geodetic (GPS and levelling) data, and new geoid models based on information from the GRACE and GOCE gravity missions, to understand how mean sea level (MSL) varies from place to place along the coast. For the last two centuries, MSL has been used to define datums for national levelling systems. However, there are many problems with this. One consequence of WHSU will be the substitution of conventional datums as a reference for heights with the use of geoid, as the only true "level" or datum. This work is within a number of GOCE-related activities funded by the European Space Agency. The study is focused on the coastlines of North America and Europe where the various datasets are most copious.

2016 ◽  
Vol 2 (02) ◽  
pp. 65
Author(s):  
Hastho Wuriatmo ◽  
Sorja Koesuma ◽  
Mohtar Yunianto

<span>It has been conducted a research about sea level rise (SLR) in surrounding Jawa island by using <span>satellite altimetry data Topex/Poseidon, Jason-1 dan Jason-2 for period 2000 <span>– <span>2010. Satellite <span>altimetry is satellite which specially design for measuring dynamics of sea water. Those <span>satellite lauched firstly in 1992 incorporation between <span><em>National Aeronautics and Space </em><span><em>Administration </em><span>(<span><em>NASA</em><span>) dan European Space Agency (ESA). There are six locations for <span>measuring SLR i.e. Jakarta, Semarang, Surabaya, Pangandaran, Jogjakarta dan Prigi. We chose<br /><span>locations based on alongtrack of satellite and near the big cities in Jawa island with dimension <span>area around 0.5<span>o<span>x0.5<span>o <span>degrees. We found SLR rate for Jakarta (2.5 ± 0.24 mm/yr), Semarang <span>(2.16 ± 0.20 mm/yr), Surabaya (2.72 ± 0.19 mm/yr), Pangandaran (0.71 ± 0.33 mm/yr), <span>Jogjakarta (0.91 ± 0.38 mm/yr) and Prigi (1.3 ± 0.38 mm/yr). The average SLR rate for North <span>coast is (2.46 ± 0.21 mm/yr) and for South coast (0.97 ± 0.36 mm/yr). This results are well<br /><span>correlated with data from tide gauge stations.</span></span></span></span></span></span></span></span></span></span></span><br /></span></span></span></span></span></span></span></span></span></span></span>


2021 ◽  
Author(s):  
Stefano Vignudelli ◽  
Francesco De Biasio

&lt;p&gt;Consistent and long-term satellite-based data-sets to study climate-scale variations of sea level globally and in the coastal zone are available nowadays. Two altimetry data-sets were recently produced: the first one is generated by the European Space Agency&amp;#8217;s (ESA) Sea Level Climate Change Initiative (SL_CCI) over a grid of 0.25 x 0.25 degrees, merging and homogenizing the various available satellite altimetry missions. The second one is a climate-oriented altimeter sea level product that started in the framework of the European Copernicus Climate Change Service (C3S), and is now released as daily-means over a grid of 0.25 x 0.25 degrees, covering the global ocean since 1993 to present. Both reach in the Arctic the latitude of 81.5 N degrees. Therefore, these new altimetry products cover the coastal area surrounding Ny-&amp;#197;lesund (Svalbard Islands, Norway), where a tide gauge station is active since 1976. Near the Svalbard coasts also the along track surface elevations of the CryoSat-2 mission are made available through the European Space Agency&amp;#8217;s Grid Processing on Demand (G-POD) for Earth Observation Applications facility.&lt;/p&gt;&lt;p&gt;In this study, we compare sea level measurements from the Ny-&amp;#197;lesund tide gauge with the climate-oriented altimeter sea level gridded products (SL_CCI and C3S) and with the along track data from the only CryoSat-2 mission. This study has three objectives: 1) to assess the performances of the gridded data moving from offshore to near coasts; 2) to explore how the synergy with along track high resolution CryoSat-2 data might help to detail the sea ice impact on the observation of relative and absolute sea level rise around Svalbard; 3) to verify if the differences between satellite altimetry and tide gauges can be used as a proxy of vertical ground movement in the study area by adopting the approaches elaborated in Vignudelli et al. [2018] and De Biasio et al. [2020] that can be validated with ground vertical displacements estimated using Global Positioning System (GPS) data from the stations close to Ny-&amp;#197;lesund.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;REFERENCES&lt;/p&gt;&lt;p&gt;Vignudelli, S., De Biasio, F., Scozzari, A. Zecchetto, S., and Papa, A. (2019): Sea Level Trends and Variability in the Adriatic Sea and Around Venice, Proceedings of the International Review Workshop on Satellite Altimetry Cal/Val Activities and Applications, 23-26 April 2018, Chania, Crete, Greece. DOI:10.1007/1345_2018_51&lt;/p&gt;&lt;p&gt;De Biasio, F.; Baldin, G.; Vignudelli, S. Revisiting Vertical Land Motion and Sea Level Trends in the Northeastern Adriatic Sea Using Satellite Altimetry and Tide Gauge Data. J. Mar. Sci. Eng. 2020, 8, 949. DOI:10.3390/jmse8110949&lt;/p&gt;


2020 ◽  
Author(s):  
Thomas Gruber ◽  
Jonas Ågren ◽  
Detlef Angermann ◽  
Artu Ellmann ◽  
Christoph Gisinger ◽  
...  

&lt;p&gt;Traditionally, sea level is observed at tide gauge stations, which usually also serve as height reference stations for national levelling networks and therefore define a height system of a country. Thus, sea level research across countries is closely linked to height system unification and needs to be regarded jointly. The project aims to make use of a new observation technique, namely SAR positioning, which can help to connect the GNSS basic network of a country to tide gauge stations and as such to link the sea level records of tide gauge stations to the geometric network. By knowing the geoid heights at the tide gauge stations in a global height reference frame with high precision, one can finally obtain absolute sea level heights of the tide gauge stations in a common reference system and can link them together. By this method, on the one hand national height systems can be connected and on the other hand the absolute sea level at the tide gauge stations can be determined. By analyzing time series of absolute sea level heights their changes can be determined in an absolute sense in a global reference frame and the impact of climate change on sea level can be quantified (e.g. by ice sheet and glacier melting, water inflow, global warming). The paper presents the main scientific questions to be addressed by the project, introduces the idea of using SAR transponders for this application and describes the observation network implemented for this feasibility study.&lt;/p&gt;


2021 ◽  
Vol 13 (13) ◽  
pp. 2580
Author(s):  
Adam Lyszkowicz ◽  
Jolanta Nastula ◽  
Janusz B. Zielinski ◽  
Monika Birylo

The Space Research Centre in Warsaw is participating in the ESA project “Geodetic SAR for Height System Unification and Sea Level Research”. To observe the absolute sea level and enable the unification of the height systems, the physical heights of the tide gauge stations referring to a common equipotential surface (quasigeoid/geoid) are needed. This paper describes the new quasigeoid model for the area of the Baltic sea. The quasigeoid calculation was carried out according to the Helmert method, in which the topography is condensed on a layer lying on the geoid. Airborne gravity anomalies from the Baltic area and terrestrial anomalies from Sweden, Finland, Denmark, Lithuania, Latvia, and Poland were used. The necessary terrain corrections have been computed from a digital terrain model based on the SRTM30 model. To compute the long-wavelength part of the quasigeoid, the geopotential models GOCE-DIR6, GOCO06s, and EIGEN-6C4 were used; therefore, the three solutions have been obtained. All calculations were done in a zero-tide system. The new quasigeoid model is obtained on a regular 1.5’ × 3.0’ grid in the GRS80 reference system, covering the Baltic Sea and the surrounding area 52° < ϕ < 68° and 11° < λ < 30°. These gravimetric quasigeoids were compared to quasigeoid undulations derived at 29 GNSS/leveling points of the ASG-EUPOS permanent network, located in the study area. Our calculations show that the accuracy of the calculated quasigeoids is almost the same in all three cases and is about ±0.04 meters. Finally, quasigeoid anomalies were interpolated at the Polish tide gauge stations. The new gravimetric quasigeoid solution could be very important for height system unification, for geophysical purposes as well as for engineering purposes.


2021 ◽  
Author(s):  
Kevin Horsburgh ◽  
Ivan D. Haigh ◽  
Jane Williams ◽  
Michela De Dominicis ◽  
Judith Wolf ◽  
...  

AbstractIn this paper, we show that over the next few decades, the natural variability of mid-latitude storm systems is likely to be a more important driver of coastal extreme sea levels than either mean sea level rise or climatically induced changes to storminess. Due to their episodic nature, the variability of local sea level response, and our short observational record, understanding the natural variability of storm surges is at least as important as understanding projected long-term mean sea level changes due to global warming. Using the December 2013 North Atlantic Storm Xaver as a baseline, we used a meteorological forecast modification tool to create “grey swan” events, whilst maintaining key physical properties of the storm system. Here we define “grey swan” to mean an event which is expected on the grounds of natural variability but is not within the observational record. For each of these synthesised storm events, we simulated storm tides and waves in the North Sea using hydrodynamic models that are routinely used in operational forecasting systems. The grey swan storms produced storm surges that were consistently higher than those experienced during the December 2013 event at all analysed tide gauge locations along the UK east coast. The additional storm surge elevations obtained in our simulations are comparable to high-end projected mean sea level rises for the year 2100 for the European coastline. Our results indicate strongly that mid-latitude storms, capable of generating more extreme storm surges and waves than ever observed, are likely due to natural variability. We confirmed previous observations that more extreme storm surges in semi-enclosed basins can be caused by slowing down the speed of movement of the storm, and we provide a novel explanation in terms of slower storm propagation allowing the dynamical response to approach equilibrium. We did not find any significant changes to maximum wave heights at the coast, with changes largely confined to deeper water. Many other regions of the world experience storm surges driven by mid-latitude weather systems. Our approach could therefore be adopted more widely to identify physically plausible, low probability, potentially catastrophic coastal flood events and to assist with major incident planning.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 95
Author(s):  
Phil J. Watson

This paper provides an Extreme Value Analysis (EVA) of the hourly water level record at Fort Denison dating back to 1915 to understand the statistical likelihood of the combination of high predicted tides and the more dynamic influences that can drive ocean water levels higher at the coast. The analysis is based on the Peaks-Over-Threshold (POT) method using a fitted Generalised Pareto Distribution (GPD) function to estimate extreme hourly heights above mean sea level. The analysis highlights the impact of the 1974 East Coast Low event and rarity of the associated measured water level above mean sea level at Sydney, with an estimated return period exceeding 1000 years. Extreme hourly predictions are integrated with future projections of sea level rise to provide estimates of relevant still water levels at 2050, 2070 and 2100 for a range of return periods (1 to 1000 years) for use in coastal zone management, design, and sea level rise adaptation planning along the NSW coastline. The analytical procedures described provide a step-by-step guide for practitioners on how to develop similar baseline information from any long tide gauge record and the associated limitations and key sensitivities that must be understood and appreciated in applying EVA.


2020 ◽  
Vol 9 (3) ◽  
pp. 185 ◽  
Author(s):  
Nevin Avşar ◽  
Şenol Kutoğlu

Global mean sea level has been rising at an increasing rate, especially since the early 19th century in response to ocean thermal expansion and ice sheet melting. The possible consequences of sea level rise pose a significant threat to coastal cities, inhabitants, infrastructure, wetlands, ecosystems, and beaches. Sea level changes are not geographically uniform. This study focuses on present-day sea level changes in the Black Sea using satellite altimetry and tide gauge data. The multi-mission gridded satellite altimetry data from January 1993 to May 2017 indicated a mean rate of sea level rise of 2.5 ± 0.5 mm/year over the entire Black Sea. However, when considering the dominant cycles of the Black Sea level time series, an apparent (significant) variation was seen until 2014, and the rise in the mean sea level has been estimated at about 3.2 ± 0.6 mm/year. Coastal sea level, which was assessed using the available data from 12 tide gauge stations, has generally risen (except for the Bourgas Station). For instance, from the western coast to the southern coast of the Black Sea, in Constantza, Sevastopol, Tuapse, Batumi, Trabzon, Amasra, Sile, and Igneada, the relative rise was 3.02, 1.56, 2.92, 3.52, 2.33, 3.43, 5.03, and 6.94 mm/year, respectively, for varying periods over 1922–2014. The highest and lowest rises in the mean level of the Black Sea were in Poti (7.01 mm/year) and in Varna (1.53 mm/year), respectively. Measurements from six Global Navigation Satellite System (GNSS) stations, which are very close to the tide gauges, also suggest that there were significant vertical land movements at some tide gauge locations. This study confirmed that according to the obtained average annual phase value of sea level observations, seasonal sea level variations in the Black Sea reach their maximum annual amplitude in May–June.


Sign in / Sign up

Export Citation Format

Share Document