height system
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 27)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Jana Izvoltova ◽  
Libor Izvolt ◽  
Janka Sestakova

Complex diagnostics of railway lines involves techniques based on discrete and continual data acquisition. While discrete measurements belong to conventional methods, the modern continual ones use automated robotized instruments with continuous recording. Observations have become more time-efficient, but the processing epoch has become longer to evaluate a large number of data. Railway line diagnostics is realized by relative methods lead to determine relative track parameters as the track gauge, elevation, and track gradients and absolute, geodetic techniques determine directional and height ratios of the track, defined in a global coordinate and height system.


2021 ◽  
Vol 13 (13) ◽  
pp. 2580
Author(s):  
Adam Lyszkowicz ◽  
Jolanta Nastula ◽  
Janusz B. Zielinski ◽  
Monika Birylo

The Space Research Centre in Warsaw is participating in the ESA project “Geodetic SAR for Height System Unification and Sea Level Research”. To observe the absolute sea level and enable the unification of the height systems, the physical heights of the tide gauge stations referring to a common equipotential surface (quasigeoid/geoid) are needed. This paper describes the new quasigeoid model for the area of the Baltic sea. The quasigeoid calculation was carried out according to the Helmert method, in which the topography is condensed on a layer lying on the geoid. Airborne gravity anomalies from the Baltic area and terrestrial anomalies from Sweden, Finland, Denmark, Lithuania, Latvia, and Poland were used. The necessary terrain corrections have been computed from a digital terrain model based on the SRTM30 model. To compute the long-wavelength part of the quasigeoid, the geopotential models GOCE-DIR6, GOCO06s, and EIGEN-6C4 were used; therefore, the three solutions have been obtained. All calculations were done in a zero-tide system. The new quasigeoid model is obtained on a regular 1.5’ × 3.0’ grid in the GRS80 reference system, covering the Baltic Sea and the surrounding area 52° < ϕ < 68° and 11° < λ < 30°. These gravimetric quasigeoids were compared to quasigeoid undulations derived at 29 GNSS/leveling points of the ASG-EUPOS permanent network, located in the study area. Our calculations show that the accuracy of the calculated quasigeoids is almost the same in all three cases and is about ±0.04 meters. Finally, quasigeoid anomalies were interpolated at the Polish tide gauge stations. The new gravimetric quasigeoid solution could be very important for height system unification, for geophysical purposes as well as for engineering purposes.


2021 ◽  
Vol 93,2021 (93) ◽  
pp. 27-34
Author(s):  
Kornyliy Tretyak ◽  
◽  
Ivan Brusak ◽  

Purpose. The purpose of this work is obtaining connections between the Baltic and European height systems based on the I class leveling between the Ukrainian and Polish control points of the base vertical networks and construction of the quasigeoid surface on the border area. Method. Full integration of the hight system of Ukraine into the European vertical reference system (EVRS) consists of two stages: modernization of the height network of Ukraine through its integration into the United European leveling network UELN; construction and use as a regional vertical date the model of high-precision quasigeoid, which will be consistent with the European geoid EGG2015. The analysis of methods of high-precision leveling in Ukraine and Poland, and also the analysis of methods of construction of quasigeoid models in these countries is performed. Results. For integrating the Ukrainian hight system into the UELN/EVRS2000 system, the Ukrainian side performed I class geometric leveling along two lines: Lviv - Shehyni - Przemysl and Kovel - Yagodyn - Chelm with total length of 196 km. The root mean square systematic error on both lines of leveling was s<0.01 mm/km. In turn, the mean square random error along the line Lviv - Shehyni - Przemysl is h=0.29 mm/km, and along the line Kovel - Yagodyn - Chelm is h=0.27 mm/km. For double control on the cross-border part, the Polish side performed high-precision leveling with a length of 33 km. The differences between the Ukrainian and Polish leveling in all sections are within the tolerance. The analysis of influence of geodynamic phenomena on control of high-precision leveling is carried out. GNSS-leveling was performed on all fundamental and ground benchmarks, as well as horizontal marks. These measurements were used to build a quasigeoid model for the border area of Ukraine. The MSE of the obtained quasigeoid model is about 2 cm, which corresponds to the accuracy of the input information. Scientific novelty and practical significance. The connection of the Ukrainian and European height systems will ensure Ukraine’s integration into the European economic system, participation in international research of global ecological and geodynamic processes, study of the Earth’s shape and gravitational field and mapping of Ukraine using navigational and remote-sensing satellite technologies. Calculation of a high-precision model of a quasigeoid on the Ukraine area in relation to the European height system, agreed with the European geoid EGG2015, will allow to obtain gravity-dependent heights using modern satellite technologies.


2021 ◽  
Vol 93,2021 (93) ◽  
pp. 13-26
Author(s):  
Ihor Trevoho ◽  
◽  
Fedir Zablotskyi ◽  
Andrzej Piskorek ◽  
Bohdan Dzhuman ◽  
...  

Purpose. The purpose of this work is obtaining connections between the Baltic and European height systems based on the I class leveling between the Ukrainian and Polish control points of the base vertical networks and construction of the quasigeoid surface on the border area. Method. Full integration of the hight system of Ukraine into the European vertical reference system (EVRS) consists of two stages: modernization of the height network of Ukraine through its integration into the United European leveling network UELN; construction and use as a regional vertical date the model of high-precision quasigeoid, which will be consistent with the European geoid EGG2015. The analysis of methods of high-precision leveling in Ukraine and Poland, and also the analysis of methods of construction of quasigeoid models in these countries is performed. Results. For integrating the Ukrainian hight system into the UELN/EVRS2000 system, the Ukrainian side performed I class geometric leveling along two lines: Lviv - Shehyni - Przemysl and Kovel - Yagodyn - Chelm with total length of 196 km. The root mean square systematic error on both lines of leveling was s<0.01 mm/km. In turn, the mean square random error along the line Lviv - Shehyni - Przemysl is h=0.29 mm/km, and along the line Kovel - Yagodyn - Chelm is h=0.27 mm/km. For double control on the cross-border part, the Polish side performed high-precision leveling with a length of 33 km. The differences between the Ukrainian and Polish leveling in all sections are within the tolerance. The analysis of influence of geodynamic phenomena on control of high-precision leveling is carried out. GNSS-leveling was performed on all fundamental and ground benchmarks, as well as horizontal marks. These measurements were used to build a quasigeoid model for the border area of Ukraine. The MSE of the obtained quasigeoid model is about 2 cm, which corresponds to the accuracy of the input information. Scientific novelty and practical significance. The connection of the Ukrainian and European height systems will ensure Ukraine’s integration into the European economic system, participation in international research of global ecological and geodynamic processes, study of the Earth’s shape and gravitational field and mapping of Ukraine using navigational and remote-sensing satellite technologies. Calculation of a high-precision model of a quasigeoid on the Ukraine area in relation to the European height system, agreed with the European geoid EGG2015, will allow to obtain gravity-dependent heights using modern satellite technologies.


2021 ◽  
Vol 41 (I) ◽  
pp. 29-36
Author(s):  
F. ZABLOTSKYY ◽  
◽  
B. DZHUMAN ◽  
I. BRUSAK ◽  
◽  
...  

Nowadays the Baltic Height System 1977 operates in Ukraine, the starting point of which is the zero of the Kronstadt banchmark. However, the current height system in Ukraine is morally obsolete primarily due to the great distance from the zero-point of height (about 2 thousand km) and the difficulty of adapting to the use of satellite surveying methods. Therefore, today it does not correspond to the level of development of modern geospatial technologies and it needs to be modernized. The most optimal way to modernize the height network of Ukraine is its integration into the United European Leveling Network UELN, the zero point of which is the Amsterdam banchmark. Within the framework of such integration it is necessary to create a high-precision geoid model for the territory of Ukraine, connected to the UELN/EVRS2000 height system. Aim. The purpose of the work is to compare the accuracy of different geoid/quasigeoid models and the global gravitational field of the Earth on the Western Ukraine area (border region) relative to the heights of points in the height system UELN/EVRS2000, where GNSSleveling is performed, and to determine the most optimal model in relation to which a high-precision geoid model can be created, consistent with the UELN/EVRS2000 height system.Method. To obtain the heights of leveling points on the Ukraine area in the UELN/EVRS2000 height system we performed I class leveling on two lines from the fundamental benchmarks on the territory of Ukraine (heights are known in the Baltic height system 1977) to I class benchmarks on the Poland area (UELN/EVRS2000 height system). GNSS-leveling in static mode (1-second sampling observations for more than 6 hours) was performed on all fundamental and ground benchmarks, as well as horizontal marks. Results. The heights of the quasigeoid at 26 points are obtained from the performed measurements. The heights are compared with three global models of the Earth’s gravitational field: EGM2008, EIGEN-6C4 and XGM2019e_2159 (the maximum order of all these models is 2190), as well as with the European geoid EGG2015. It is established that the best accuracy (≈ 7 cm) allows to obtain the European geoid EGG2015. Scientific novelty and practical significance. For the first time the accuracy of the Earth’s gravitational field models and geoid models on the Ukraine area is investigated at points where the height in the UELN/EVRS2000 height system is known. We established that when constructing a high-precision quasigeoid using the “Remove–Restore” procedure, it is best to use the European geoid EGG2015 as a systematic component.


2021 ◽  
Author(s):  
Muhammed Raşit Çevikalp ◽  
Bihter Erol ◽  
Bilal Mutlu ◽  
Serdar Erol

&lt;p&gt;The maintenance of leveling benchmark is both laborious and costly due to distortions caused by geodynamic activities and local deformations. It is necessary to realize geoid-based vertical datum, which also enables calculation from ellipsoidal heights obtained from GNSS to orthometric heights that have physical meaning. It can be considered as an important step for height system unification as it eliminates the problems stem from the conventional vertical datum. The ongoing height modernization efforts in Turkey focus to improve quality and coverage of the gravity data, eliminate errors in existing terrestrial gravity measurements in order to achieve a precise geoid model. Accuracy of the geopotential model is crucial while realizing a geoid model based vertical datum as well as unifying the regional height systems with the International Heights Reference System. In this point of view, we assessed the accuracies of recently released global geopotential models including XGM2019e_2159, GECO, EIGEN-6C4, EGM2008, SGG-UGM-1, EIGEN-6C3stat, and EIGEN-6C2 using high order GNSS/leveling control benchmarks and terrestrial gravity data in Turkey. The reason for choosing these models in the validations is their relatively higher spatial resolutions and improved accuracies compared to other GGMs in published validation results with globally distributed terrestrial data. The GNSS/leveling data used in validations include high accuracy GNSS coordinates in ITRF datum with co-located Helmert orthometric heights in regional vertical datum. 100 benchmarks are homogeneously distributed in the country with the benchmarks along the coastlines. In addition, the terrestrial gravity anomalies with 5 arc-minute resolution were also used in the tests. In order to have comparable results, residual terrain effect has been restored to the GGM derived parameters. Numerical tests revealed significant differences in accuracies of the tested GGMs. The most accurate GGM has the comparable performance with official regional geoid model solutions in Turkey. The drawn results in the study were interpreted and discussed from practical applications and height system unification points in conclusion.&lt;/p&gt;


2021 ◽  
Author(s):  
Yifan Wu ◽  
Wen-Bin Shen

&lt;p&gt;VLBI technique plays important role in both astronomy and geodesy due its fantastic ability to determine the position of celestial bodies and the length of baseline on Earth. Moreover it also presents excellent work on time comparisons between atomic clocks located in remote positions where optical fiber links are not accessible. Due to its high reliability and stability, the information of Earth&amp;#8217;s gravity field can be extracted from VLBI time comparisons in the framework of general relativity. In this study, we provide a formulation to determine the gravity potential difference by VLBI time comparisons. In fact the precision of the estimated gravity potential depends on the performance of participated clocks and the accuracy of time comparison technique. Thus we present simulation experiments using clocks with 10&lt;sup&gt;-16&lt;/sup&gt;@1d stability and broadband VLBI observation and determine gravity potential difference within a VLBI network around world with 10 m&lt;sup&gt;2&lt;/sup&gt;/s&lt;sup&gt;2 &lt;/sup&gt;precision which is equivalent to 1 m in height. The results could be greatly improved using optical atomic clocks with much higher stabilities. Furthermore it can be applied to height transfer across oceans and unifying the height system. This study is supported by the National Natural Science Foundations of China (NSFC) under Grants 42030105, 41721003, 41804012, 41631072, 41874023, and Space Station Project (2020)228.&lt;/p&gt;


2021 ◽  
Vol 53 (1) ◽  
pp. 1-12
Author(s):  
Rostyslav Sossa

Abstract The fundamentals and contemporary status of topographic mapping of Ukraine’s territory has been studied. Prior to declaration of Ukraine’s independence, its territory was covered with 1:10,000 to 1:1,000,000 scale topographic maps made by sub-divisions of the Chief Department of Geodesy and Cartography affiliated with the Council of Ministers of the USSR (GUGK USSR) and sub-divisions of the Military Topographic Service (MTS) of the USSR Armed Forces. Topographic mapping related cooperation between these institutions has been described. Topographic study of Ukraine’s territory as at 1991 has been subject to close analysis, with due consideration of the coordinate systems used for topographic maps. During the first years after Ukraine’s independence declaration topographic maps in Ukraine were made according to the previously effective Soviet instructions in the 1942 coordinate systems and 1977 Baltic height system. Since mid 1990s, Ukraine enjoyed transition from analog technology of making topographic maps to digital one. The contemporary legal and statutory support of topographic mapping in Ukraine has been studied; the implementation since 1 January 2007 of the UCS-2000 national geodetic reference coordinate system and the height system measurement works have been analyzed. Focus has been made on obsolescence of information of contemporary topographic maps and on extensive deprivation of secrecy for topographic maps in 2000s. Critical for the development of topographic mapping in Ukraine is now the Law of Ukraine “On National Geospatial Data Infrastructure” adopted in 2020. The Topographic Service of the Armed Forces (TS AF) of Ukraine carried out big scopes of works to update the topographic maps related to Russia’s military operations against Ukraine.


2021 ◽  
Vol 65 (02) ◽  
pp. 219-233
Author(s):  
Miran Kuhar ◽  
Robert Brglez ◽  
Božo Koler

This paper describes the quality determination of heights above mean sea level using RTK GNSS-levelling and new height reference surface SLO_VRP2016/Koper on the city area of Ljubljana. At 57 chosen benchmarks, quasigeoid heights were determined using ellipsoidal heights, determined with RTK GNNS-levelling technique and heights above mean sea level in the new height system SVS2010. The measured quasigeoid heights were compared with values interpolated from the new height reference surface SLO_VRP2016/Koper.


2021 ◽  
Vol 42 (3) ◽  
pp. 522-526
Author(s):  
ZHANG Youjun ◽  
◽  
◽  
ZHANG Chijian ◽  
XIE Wanyi ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document