scholarly journals Characterization of land subsidence induced by groundwater withdrawals in Wenyu River alluvial fan, Beijing, China

Author(s):  
R. Wang ◽  
Y. Luo ◽  
Y. Yang ◽  
F. Tian ◽  
Y. Zhou ◽  
...  

Abstract. The Beijing plain area has suffered from severe land subsidence owing to groundwater overdraft. A major example is the Wenyu River alluvial fan in the Beijing plain area. This area has experienced as much as 10 m of land subsidence through 2000s. An integrated subsidence-monitoring program, including borehole extensometer and multilayer monitoring of groundwater, has been designed to meet the needs of monitoring land subsidence in this region. This work has allowed us to characterize land subsidence and understand the mechanical properties of the strata. The analysis results show the development of the land subsidence in this area is consistent with water-level change. The major strata contributing to compression deformation are Mid-Pleistocene stratum which contributed around 70 % of total subsidence. The shallow stratum and deep stratum show elastic mechanical behavior the intermediate stratum exhibit elastic-plastic mechanical behavior.

Author(s):  
Lin Guo ◽  
Huili Gong ◽  
Xiaojuan Li ◽  
Lin Zhu ◽  
Wei Lv ◽  
...  

Abstract. Land subsidence, as a surface response to the development, utilization and evolution of underground space, has become a global and multidisciplinary complex geological environment problem. Since the 1960s, land subsidence has been developing rapidly in the Beijing Plain area. Against the backdrop of the integration of Beijing, Tianjin and Hebei in addition to “southern water” (South-to-North Water Diversion Project, SNWDP) entering Beijing, the systematic study of the evolution mechanism of land subsidence is of great significance for the sustainable development of the regional economy. Firstly, this study used ENVISAT ASAR and RADARSAT-2 data to obtain surface deformation information for the Beijing Plain area from 2004 to 2015 and then verified the results. Secondly, the study area was divided into units using a 960 m×960 m grid, and the ground settlement rate of each grid unit from 2004 to 2015 was obtained. Finally, the Mann–Kendall test was performed on the grid to obtain the mutation information for each grid unit. Combined with hydrogeology and basic geological conditions, we have attempted to analyze the causes of the mutations in the grid. The results show that 2347 grid cells were mutated in a single year, with most of these distributed across the Yongding River alluvial fan and the middle and lower parts of the Chaobai River alluvial fan. A total of 1128 grid cells were mutated in multiple years, with the majority of these cells mainly distributed across the upper-middle area of the alluvial fan, near the emergency water source and at the edge of the groundwater funnel. This study aims to provide favorable technical support and a scientific basis for urban construction in Beijing.


Author(s):  
M. L. Gao ◽  
H. L. Gong ◽  
B. B. Chen ◽  
C. F. Zhou ◽  
K. S. Liu ◽  
...  

Abstract. InSAR time series analysis is widely used for detection and monitoring of slow surface deformation. In this paper, 15 TerraSAR-X radar images acquired in stripmap mode between 2012 and 2013 are processed for land subsidence monitoring with the Small Baseline Subset (SBAS) approach in Beijing Plain in China. Mapping results produced by SBAS show that the subsidence rates in the area of Beijing Plain range from −97.5 (subsidence) and to +23.8 mm yr−1 (uplift), relative to a presumably stable benchmark. The mapping result also reveals that there are the five subsidence centers formed by surface deformation spreading north to south east of the downtown. An uneven subsidence patten was detected near the Beijing Capital International Airpor, which may be related to loading of buildings and the aircraft.


2020 ◽  
Vol 12 (17) ◽  
pp. 2730
Author(s):  
Di Zhou ◽  
Anita Simic-Milas ◽  
Jie Yu ◽  
Lin Zhu ◽  
Beibei Chen ◽  
...  

Identifying Persistent Scatterers (PSs) is one of the key processing steps of the Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) technique. The number, density, and reliability of identified PSs directly affect the monitoring accuracy of land subsidence, especially in higher density urban environments. As a result of the side-looking viewing geometry of SAR, the layover effect poses a major challenge to the PS identification. This research proposes joint modeling of the PS-InSAR technique and RELAX algorithm for SAR tomography (PS-InSAR+RELAX) to detect single and double scatterers and to improve the identification and reliability of PSs. It has been demonstrated that RELAX improves separation of the scatterers when compared to two other spectral analysis methods for SAR tomography, Beam-Forming (BF) and Singular Value Decomposition (SVD). RELAX exhibits the least noise when the number of baseline changes from 15 to 30, and it can separate the scatterers at a lower Normal-Slant-Range (NSR) height than the two other methods. As RELAX can better identify, separate, and then filter out layover scatterers, the number and density of PSs identified by PS-InSAR+RELAX is reduced and visually simplified, suggesting that the method can effectively reduce the influence of the layover effect on the PS identification. Also, the PSs identified by PS-InSAR+RELAX are more coherent than those identified by the traditional PS-InSAR technique. The proposed technique has been applied to Sentinel-1A data acquired from 2014 to 2016, to monitor land subsidence in the city of Beijing, China. When evaluated against the leveling measurements, PS-InSAR+RELAX performs better than the traditional PS-InSAR technique, with the correlation coefficients (r) of r = 0.98 and r = 0.95, respectively.


2004 ◽  
Vol 45 (8) ◽  
pp. 1154-1166 ◽  
Author(s):  
Chih-Hsi Liu ◽  
Yii-Wen Pan ◽  
Jyh-Jong Liao ◽  
Chen-Tair Huang ◽  
Shoung Ouyang
Keyword(s):  

Author(s):  
Wei-Chia Hung ◽  
Yi-An Chen ◽  
Cheinway Hwang

Abstract. Over 1992–2018, groundwater overexploitation had caused large-scale land subsidence in the Choshui River Alluvial Fan (CRAF) in Taiwan. The Taiwan High Speed Railway (THSR) passes through an area of severe subsidence in CRAF, and the subsidence poses a serious threat to its operation. How to effectively monitor land subsidence here has become a major issue in Taiwan. In this paper, we introduce a multiple-sensor monitoring system for land subsidence, including 50 continuous operation reference stations (CORS), multi temporal InSAR (MT-InSAR), a 1000 km levelling network, 34 multi-layer compaction monitoring wells and 116 groundwater monitoring wells. This system can monitor the extent of land subsidence and provide data for studying the mechanism of land subsidence. We use the Internet of Things (IoT) technology to control and manage the sensors and develop a bigdata processing procedure to analyse the monitoring data for the system of sensors. The procedure makes the land subsidence monitoring more efficient and intelligent.


Author(s):  
Lin Guo ◽  
Huili Gong ◽  
Feng Zhu ◽  
Lin Zhu ◽  
Chaofan Zhou ◽  
...  

Since the 1970s, land subsidence has been developing rapidly in the Beijing Plain, the systematic study of its evolution mechanism is of great significance to the sustainable development of the regional economy. First, based on ENVISAT ASAT and RADARSAT2 data, the land subsidence data in Beijing Plain were obtained using permanent interferometer technology. Second, based on the GIS platform and using fishing net tools, vector data of ground settlement with different resolutions were obtained. Through a series of tests, a scale of 960 metres was selected as the research unit, and the subsidence rate of the grid was obtained from 2004 to 2015. Finally, based on the Mann-Kendall mutation test method, a trend analysis of land subsidence changes in various grids was carried out. The results showed that single-year mutation mainly distributed in the middle and lower parts of the Yongding River alluvial fan and the Chaobai River alluvial fan, mainly occurring in 2015, 2005 and 2013, respectively. The upper and middle alluvial fan of the Chaobai River, the vicinity of the emergency water source and the edge velocity of the groundwater funnel have undergone several sudden changes. Combined with hydrogeology, basic geological conditions and the impact of the South-to-North Water transfer project, we analysed the causes of the mutations in the grid. The research results can provide a basis for the study and prevention of land subsidence in this area and help to further explore the trend characteristics of land subsidence in this area.


2019 ◽  
Vol 11 (10) ◽  
pp. 1170 ◽  
Author(s):  
Lin Guo ◽  
Huili Gong ◽  
Feng Zhu ◽  
Lin Zhu ◽  
Zhenxin Zhang ◽  
...  

Since the 1970s, land subsidence has been rapidly developing on the Beijing Plain, and the systematic study of the evolutionary mechanism of this subsidence is of great significance in the sustainable development of the regional economy. On the basis of Interferometric Synthetic Aperture Radar (InSAR) results, this study employed the Mann–Kendall method for the first time to determine the mutation information of land subsidence on the Beijing Plain from 2004 to 2015. By combining the hydrogeological conditions, “southern water” project, and other data, we attempted to analyse the reasons for land subsidence mutations. First, on the basis of ENVISAT ASAR and RADARSAT-2 data, the land subsidence of the Beijing Plain was determined while using small baseline interferometry (SBAS-InSAR) and Persistent Scatterers Interferometry (PSI). Second, on the basis of the Geographic Information System (GIS) platform, vector data of displacement under different scales were obtained. Through a series of tests, a scale of 960 metres was selected as the research unit and the displacement rate from 2004 to 2015 was obtained. Finally, a trend analysis of land subsidence was carried out on the basis of the Mann–Kendall mutation test. The results showed that single-year mutations were mainly distributed in the middle and lower parts of the Yongding River alluvial fan and the Chaobai River alluvial fan. Among these mutations, the greatest numbers occurred in 2015 and 2005, being 1344 and 915, respectively. The upper and middle alluvial fan of the Chaobai River, the vicinity of the emergency water sources, and the edge of the groundwater funnel have undergone several mutations. Combining hydrogeological data of the study area and the impact of the south-to-north water transfer project, we analysed the causes of these mutations. The experimental results can quantitatively verify the mutation information of land subsidence in conjunction with time series to further elucidate the spatial-temporal variation characteristics of land subsidence in the study area.


2014 ◽  
Vol 6 (5) ◽  
pp. 3648-3661 ◽  
Author(s):  
Bo Hu ◽  
Han-Sheng Wang ◽  
Yong-Ling Sun ◽  
Jian-Guo Hou ◽  
Jun Liang

Sign in / Sign up

Export Citation Format

Share Document