scholarly journals Long-Term Land Subsidence Monitoring of Beijing (China) Using the Small Baseline Subset (SBAS) Technique

2014 ◽  
Vol 6 (5) ◽  
pp. 3648-3661 ◽  
Author(s):  
Bo Hu ◽  
Han-Sheng Wang ◽  
Yong-Ling Sun ◽  
Jian-Guo Hou ◽  
Jun Liang
Author(s):  
M. L. Gao ◽  
H. L. Gong ◽  
B. B. Chen ◽  
C. F. Zhou ◽  
K. S. Liu ◽  
...  

Abstract. InSAR time series analysis is widely used for detection and monitoring of slow surface deformation. In this paper, 15 TerraSAR-X radar images acquired in stripmap mode between 2012 and 2013 are processed for land subsidence monitoring with the Small Baseline Subset (SBAS) approach in Beijing Plain in China. Mapping results produced by SBAS show that the subsidence rates in the area of Beijing Plain range from −97.5 (subsidence) and to +23.8 mm yr−1 (uplift), relative to a presumably stable benchmark. The mapping result also reveals that there are the five subsidence centers formed by surface deformation spreading north to south east of the downtown. An uneven subsidence patten was detected near the Beijing Capital International Airpor, which may be related to loading of buildings and the aircraft.


2021 ◽  
Author(s):  
Mehdi Darvishi ◽  
Fernando Jaramillo

<p>In the recent years, southern Sweden has experienced drought conditions during the summer with potential risks of groundwater shortages. One of the main physical effects of groundwater depletion is land subsidence, a geohazard that potentially damages urban infrastructure, natural resources and can generate casualties. We here investigate land subsidence induced by groundwater depletion and/or seasonal variations in Gotland, an agricultural island in the Baltic Sea experiencing recent hydrological droughts in the summer. Taking advantage of the multiple monitoring groundwater wells active on the island, we explore the existence of a relationship between groundwater fluctuations and ground deformation, as obtained from Interferometric Synthetic Aperture Radar (InSAR). The aim in the long-term is to develop a high-accuracy map of land subsidence with an appropriate temporal and spatial resolution to understand groundwater changes in the area are recognize hydroclimatic and anthropogenic drivers of change.</p><p>We processed Sentinel-1 (S1) data, covering the time span of 2016-2019, by using the Small BAseline Subset (SBAS) to process 119 S1-A/B data (descending mode). The groundwater level of Nineteen wells distributed over the Gotland island were used to assess the relationship between groundwater depletion and the detected InSAR displacement. In addition to that, the roles of other geological key factors such as soil depth, ground capacity in bed rock, karstification, structure of bedrock and soil type in occurring land subsidence also investigated. The findings showed that the groundwater level in thirteen wells with soil depths of less than 5 meters correlated well with InSAR displacements. The closeness of bedrock to ground surface (small soil depth) was responsible for high coherence values near the wells, and enabled the detection land subsidence. The results demonstrated that InSAR could use as an effective monitoring system for groundwater management and can assist in predicting or estimating low groundwater levels during summer conditions.</p>


Author(s):  
G. Artese ◽  
S. Fiaschi ◽  
D. Di Martire ◽  
S. Tessitore ◽  
M. Fabris ◽  
...  

The Emilia Romagna Region (N-E Italy) and in particular the Adriatic Sea coastline of Ravenna, is affected by a noticeable subsidence that started in the 1950s, when the exploitation of on and off-shore methane reservoirs began, along with the pumping of groundwater for industrial uses. In such area the current subsidence rate, even if lower than in the past, reaches the -2 cm/y. Over the years, local Authorities have monitored this phenomenon with different techniques: spirit levelling, GPS surveys and, more recently, Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques, confirming the critical situation of land subsidence risk. In this work, we present the comparison between the results obtained with DInSAR and GPS techniques applied to the study of the land subsidence in the Ravenna territory. With regard to the DInSAR, the Small Baseline Subset (SBAS) and the Coherent Pixel Technique (CPT) techniques have been used. Different SAR datasets have been exploited: ERS-1/2, ENVISAT, TerraSAR-X and Sentinel-1. Some GPS campaigns have been also carried out in a subsidence prone area. 3D vertices have been selected very close to existing persistent scatterers in order to link the GPS measurement results to the SAR ones. GPS data were processed into the International reference system and the comparisons between the coordinates, for the first 6 months of the monitoring, provided results with the same trend of the DInSAR data, even if inside the precision of the method.


2021 ◽  
Author(s):  
Mahmud Haghshenas Haghighi ◽  
Mahdi Motagh

<p>In April 2019, large parts of Khuzestan province in Iran were affected by intense record rainfall in the Zagros mountains. Persian Gulf catchment received approximately 30% of its long-term average rainfall over the course of a few days. Karkheh and Dez, two of the major rivers in this catchment, overflowed their banks. As several dams, including Karkheh, with the country's largest capacity, reached their limits, the water had to be released from the reservoirs, which resulted in flooding downstream of the dams. Several cities and more than 200 villages were flooded, and many people had to be evacuated. Many of the dams affected by the 2019 flood were embankment dams,  previously reported to exhibit post-construction settlements, at places reaching 13 cm/yr. Therefore, during and after the flood,  significant concerns were raised about their health and stability.</p><p>In this study, we use Sentinel-1 InSAR to monitor embankment dams' response in Khuzestan to the 2019 flood event. We process the full archive of Sentinel-1 using the Small Baseline Subset approach and estimate the time series of displacement for three different embankment dams in Khuzestan province. The first two studied dams are Karkheh and Gotvand, which have the country's largest capacities and became operational in 2001 and 2012, respectively. The third studied dam is the Masjed-Soleyman dam, previously reported to sustain a high displacement rate since its operation in 2002.</p><p>The Sentinel-1 InSAR displacement results indicate that all observed dams exhibit long-term post-construction settlement before the flood, with rates varies from approximately 1 cm/yr for the Karkheh dam to 5 cm/yr for Gotvand dam and 8 cm/yr for Masjed-Soleyman dam. The time series of displacement for Karkheh and Gotvand dams show gentle changes of displacement in response to the increase in water level following the flood. However, for the Masjed-Soleyman dam, the movement accelerates sharply after the flood with more than 2 cm of displacement on the crest in only two months. For the Masjed-Soleyman dam experiencing the most severe effect of the flood, we also analyzed high-resolution data from TerraSAR-X and COSMO-SkyMed. The results provide a detailed picture of the displacement pattern over the crest and the dam's body before and after the flood.</p>


2019 ◽  
Vol 11 (14) ◽  
pp. 1673 ◽  
Author(s):  
Qiong Wu ◽  
Chunting Jia ◽  
Shengbo Chen ◽  
Hongqing Li

Yan’an new district (YND) is one of the largest civil engineering projects for land creation in Loess Plateau, of which the amount of earthwork exceeds 600 million m3, to create 78.5 km2 of flat land. Such mega-scale engineering activities and complex geological characteristics have induced wide land deformation in the region. Small baseline subset synthetic aperture radar interferometry (SBAS-InSAR) method and 55 Sentinel-1A (S-1A) images were utilized in the present work to investigate the urban surface deformation in the Yan’an urban area and Yan’an new airport (YNA) from 2015 to 2019. The results were validated by the ground leveling measurements in the YNA. It is found that significant uneven surface deformation existed in both YND and YNA areas with maximum accumulative subsidence of 300 and 217 mm, respectively. Moreover, the average subsidence rate of the YND and YNA areas ranged from −70 to 30 mm/year and −50 to 25 mm/year, respectively. The present work shows that the land deformation suffered two periods (from 2015 to 2017 and from 2017 to 2019) and expanded from urban center to surrounding resettlement area, which are highly relevant with urban earthwork process. It is found that more than 60% of land subsidence occurs at filled areas, while more than 65% of surface uplifting occurs at excavation areas. The present work shows that the subsidence originates from the earth filling and the load of urban buildings, while the release of stress is the major factor for the land uplift. Moreover, it is found that the collapsibility of loess and concentrated precipitation deteriorates the degree of local land subsidence. The deformation discovered by this paper shows that the city may suffer a long period of subsidence, and huge challenges may exist in the period of urban maintaining buildings and infrastructure facilities.


Author(s):  
Antonio Pepe ◽  
Manuela Bonano ◽  
Qing Zhao ◽  
Tianliang Yang ◽  
Hanmei Wang

This paper is aimed at studying the temporal evolution of the surface displacements occurred over the past few years in the ocean-reclaimed platforms of the Shanghai megacity (China), which are mainly ascribable to consolidation processes of large dredger fills and alluvial deposits. With respect to previous analyses carried out over the same area, this work provides a joint multi-platform differential interferometry synthetic aperture radar (DInSAR) analysis, based on the application of the advanced Small BAseline Subset (SBAS) algorithm. This led us to retrieve long-term deformation time-series that are helpful for a better understanding of the on-going deformation phenomena. To this aim, we have exploited two sequences of SAR data collected by the ASAR/ENVISAT and by the COSMO-SkyMed (CSK) sensors, respectively, spanning the whole time period from 2007 to 2016. Unfortunately, the large time gap (of about three years) existing between the available ASAR/ENVISAT and CSK datasets gave rise to additional difficulties for their combination. Nevertheless, this problem has been faced by benefiting from the knowledge of a time-dependent model describing the temporal evolution of the expected deformations affecting the Shanghai ocean-reclaimed platforms.


Author(s):  
R. Wang ◽  
Y. Luo ◽  
Y. Yang ◽  
F. Tian ◽  
Y. Zhou ◽  
...  

Abstract. The Beijing plain area has suffered from severe land subsidence owing to groundwater overdraft. A major example is the Wenyu River alluvial fan in the Beijing plain area. This area has experienced as much as 10 m of land subsidence through 2000s. An integrated subsidence-monitoring program, including borehole extensometer and multilayer monitoring of groundwater, has been designed to meet the needs of monitoring land subsidence in this region. This work has allowed us to characterize land subsidence and understand the mechanical properties of the strata. The analysis results show the development of the land subsidence in this area is consistent with water-level change. The major strata contributing to compression deformation are Mid-Pleistocene stratum which contributed around 70 % of total subsidence. The shallow stratum and deep stratum show elastic mechanical behavior the intermediate stratum exhibit elastic-plastic mechanical behavior.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Bo Hu ◽  
Xiongle Chen ◽  
Xingfu Zhang

Los Angeles has undergone tremendous deformations over the past few decades, mainly due to human factors such as natural disasters and earthquakes, urban construction, overexploitation of groundwater, and oil extraction. The purpose of this study is to map the temporal and spatial variations of land subsidence in Los Angeles and to use the improved SBAS (small baseline subset) technique and multisensor SAR datasets to analyze the causes of deformations in this area from October 2003 to October 2017. At the same time, the deformation results of SBAS inversion are compared with the GPS measurements and the multisensor SAR dataset deformation, and the results are highly consistent. During the period from 2003 to 2017, there were several subsidence regions and one uplift region in Los Angeles. The cumulative subsidence was -266.8 mm at the maximum, and the average annual subsidence velocity was -19 mm/yr, which was mainly caused by groundwater overexploitation. The maximum amount of accumulated lift is +104.8 mm, and the average annual lifting velocity can reach +7.5 mm/yr. Our results have very strong practical application value and can provide a significant basis for local government services in disaster prevention and mitigation decision-making.


2020 ◽  
Vol 12 (2) ◽  
pp. 299 ◽  
Author(s):  
Yanan Du ◽  
Guangcai Feng ◽  
Lin Liu ◽  
Haiqiang Fu ◽  
Xing Peng ◽  
...  

Coastal areas are usually densely populated, economically developed, ecologically dense, and subject to a phenomenon that is becoming increasingly serious, land subsidence. Land subsidence can accelerate the increase in relative sea level, lead to a series of potential hazards, and threaten the stability of the ecological environment and human lives. In this paper, we adopted two commonly used multi-temporal interferometric synthetic aperture radar (MTInSAR) techniques, Small baseline subset (SBAS) and Temporarily coherent point (TCP) InSAR, to monitor the land subsidence along the entire coastline of Guangdong Province. The long-wavelength L-band ALOS/PALSAR-1 dataset collected from 2007 to 2011 is used to generate the average deformation velocity and deformation time series. Linear subsidence rates over 150 mm/yr are observed in the Chaoshan Plain. The spatiotemporal characteristics are analyzed and then compared with land use and geology to infer potential causes of the land subsidence. The results show that (1) subsidence with notable rates (>20 mm/yr) mainly occurs in areas of aquaculture, followed by urban, agricultural, and forest areas, with percentages of 40.8%, 37.1%, 21.5%, and 0.6%, respectively; (2) subsidence is mainly concentrated in the compressible Holocene deposits, and clearly associated with the thickness of the deposits; and (3) groundwater exploitation for aquaculture and agricultural use outside city areas is probably the main cause of subsidence along these coastal areas.


2020 ◽  
Vol 12 (17) ◽  
pp. 2730
Author(s):  
Di Zhou ◽  
Anita Simic-Milas ◽  
Jie Yu ◽  
Lin Zhu ◽  
Beibei Chen ◽  
...  

Identifying Persistent Scatterers (PSs) is one of the key processing steps of the Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) technique. The number, density, and reliability of identified PSs directly affect the monitoring accuracy of land subsidence, especially in higher density urban environments. As a result of the side-looking viewing geometry of SAR, the layover effect poses a major challenge to the PS identification. This research proposes joint modeling of the PS-InSAR technique and RELAX algorithm for SAR tomography (PS-InSAR+RELAX) to detect single and double scatterers and to improve the identification and reliability of PSs. It has been demonstrated that RELAX improves separation of the scatterers when compared to two other spectral analysis methods for SAR tomography, Beam-Forming (BF) and Singular Value Decomposition (SVD). RELAX exhibits the least noise when the number of baseline changes from 15 to 30, and it can separate the scatterers at a lower Normal-Slant-Range (NSR) height than the two other methods. As RELAX can better identify, separate, and then filter out layover scatterers, the number and density of PSs identified by PS-InSAR+RELAX is reduced and visually simplified, suggesting that the method can effectively reduce the influence of the layover effect on the PS identification. Also, the PSs identified by PS-InSAR+RELAX are more coherent than those identified by the traditional PS-InSAR technique. The proposed technique has been applied to Sentinel-1A data acquired from 2014 to 2016, to monitor land subsidence in the city of Beijing, China. When evaluated against the leveling measurements, PS-InSAR+RELAX performs better than the traditional PS-InSAR technique, with the correlation coefficients (r) of r = 0.98 and r = 0.95, respectively.


Sign in / Sign up

Export Citation Format

Share Document