scholarly journals Radionuclide geochemistry: solubility and thermodynamics in an HLW repository

2021 ◽  
Vol 1 ◽  
pp. 149-150
Author(s):  
David Fellhauer ◽  
Xavier Gaona ◽  
Marcus Altmaier ◽  
Horst Geckeis

Abstract. Deep geological disposal is the internationally favoured option to isolate high-level nuclear waste (HLW) from the biosphere and to minimise the potential radiological risk for future generations. Potentially contacting aqueous solutions such as groundwater may, however, lead to the corrosion of the solid casks containing the nuclear waste, and the formation of aqueous radionuclide systems in the near-field of the emplacement rooms. As dissolved species, radionuclides can in principle further migrate into the far-field and finally reach the biosphere on medium and long timescales. Like all chemical species, the radionuclides are subject to fundamental (geo)chemical laws. Relevant reactions that control retention and release, and hence, the migration behaviour and fate of radionuclides in a repository, are solubility equilibria, formation of soluble complexes, redox reactions, sorption on and incorporation into mineral surfaces, transport phenomena etc. These processes depend directly on the (geo)chemical boundary conditions, and, consequently, can differ greatly for various host rock systems such as clay rock, rock salt, and crystalline rock. Many of the radionuclides in HLW are heavy metals that are sparingly soluble under various repository-relevant conditions, e.g. actinides, lanthanides, transition metals, so that only partial dissolution (mobilisation) from the solid waste matrices is expected. This underlines the importance of evaluating the radionuclide solubility within a geochemically based safety assessment for repositories as it provides reliable upper-limit concentrations of the mobile, potentially migrating radionuclide fraction in the near-field. In this contribution, we discuss relevant aspects related to the topic radionuclide solubility and thermodynamics in a HLW repository. This includes a summary of recent laboratory studies on the solubility behaviour and speciation of key radionuclides in repository-relevant solutions, which are an important basis for obtaining (geo)chemical information and models, and the corresponding fundamental thermodynamic constants on aqueous radionuclide systems. National and international thermodynamic database projects, where quality-assured thermodynamic data (solubility products, complex formation constants, and ion-interaction parameters) are evaluated and compiled, e.g. the Nuclear Energy Agency Thermochemical Database (http://www.oecd-nea.org, last access: 1 November 2021) or the Thermodynamic Reference Database (http://www.thereda.de, last access: 1 November 2021), are highlighted and the main remaining uncertainties discussed. The experimental information and the quantitative thermodynamic data are applied within a generic case study to demonstrate the impact of different geochemical solution conditions representing different host rock systems considered as HLW repositories in Germany on the solubility and speciation of selected radionuclides.

2021 ◽  
Author(s):  
Matias Alonso ◽  
Jean Vaunat ◽  
Minh-Ngoc Vu ◽  
Antonio Gens

<p>Argillaceous rocks have great potential as possible geological host medium to store radioactive waste.  Andra is leading the design of a deep geological nuclear waste repository to be located in the Callovo-Oxfordian formation. In the framework of this project, excavations of large diameter galleries are contemplated to access and to store intermediate-level long-lived nuclear waste at repository main level. The closure of the repository will be realized by building sealing structures of expansive material.</p><p>The response of such structures is affected by several thermo-hydro-mechanical coupled processes taking place in the near and far field of the argillaceous formations. They include the formation of an excavation induced damaged zone around the galleries, the impact of the thermal load on host rock pressures and deformations, the long-term interaction with support concrete structural elements and the hydration and swelling of sealing materials. As a result, the study of their performance requires to perform simulation works of increasing complexity in terms of coupling equations, problem geometry and material behaviour. As well, challenging computational aspects, as the ones related to fractures creation and propagation, have to be considered for a representative analysis of the problem.</p><p>This work presents advanced large scale THM numerical models to provide keys about the response of the host rock around large diameter galleries during excavation and further thermal load as well as to analyse the performance of large diameter sealing structures. Particular features of the models include on one hand advanced constitutive laws to capture the development of the fractured zone around excavations, the behaviour of host rock/gallery support interfaces and the multi-scale response of bentonitic backfill. On the other hand, simulations consider geometries including constructive details of interest at decimetre scale within large discretization domain covering the whole formation stratigraphic column.</p><p>These challenging simulations provided qualitative and quantitative results on key aspects for natural and engineered barrier integrity, like extension of the damaged zone, impact of the thermal load and water pressure variations in the surrounding geological layers, duration of natural hydration phase, swelling pressure development and seals global stability.</p>


1993 ◽  
Vol 333 ◽  
Author(s):  
W. Zhou ◽  
M. J. Apted ◽  
P. Robinson

ABSTRACTSource-term codes to predict the release of radionuclides from nuclear waste packages have been developed and implemented worldwide. A survey and initial comparison of the attributes and capabilities of 13 international source-term codes was recently completed. This preliminary analysis focused on comparison of transport factors/processes and solution methods. This initial comparison is a necessary first step in a properly-conceived, systematic benchmarking of source-term codes. Advantages of such a comparison include assurance of the mathematical correctness of implemented models, comparison and quantification of variances introduced by different types of simplifications, and identification and quantification of the impact of near-field processes.


2002 ◽  
Vol 713 ◽  
Author(s):  
Kaname Miyahara ◽  
Hitoshi Makino ◽  
Tomoko Kato ◽  
Keiichiro Wakasugi ◽  
Atsushi Sawada ◽  
...  

ABSTRACTThe H12 performance assessment (PA) provided a test for the robustness of a HLW repository system concept based on structured siting and design, taking account of a wide range of potentially suitable Japanese geological environments. The generic nature of the host rock in the H12 assessment means, however, that emphasis is placed verymuch on strong EBS performance. The assessment included a comprehensive evaluation of uncertainty and potentially detrimental factors, including perturbations due to external events and processes. Despite the considerable uncertainty at the current stage of the Japanese program, a safety case that is adequate for the aims of the assessment can be made by a strategy of employing conservatism where there is uncertainty and stressing the reliability and effectiveness of the performance of the near-field. The aim of this paper is to present the H12 PA in a way which makes the PA process clearer and the implications of the results more meaningful, both to workers within the PA field and to a wider technical audience.


2021 ◽  
Vol 1 ◽  
pp. 151-152
Author(s):  
Xavier Gaona ◽  
Marcus Altmaier ◽  
Iuliia Androniuk ◽  
Nese Çevirim-Papaioannou ◽  
Michel Herm ◽  
...  

Abstract. Safety concepts regarding nuclear waste disposal in underground repositories generally rely on a combination of engineered and geological barriers, which minimize the potential release of radionuclides from the containment-providing rock zone or even their transport into the biosphere. Cementitious materials are used for conditioning of certain nuclear waste types, as components of waste containers and overpacks, as well as being constituents of structural materials at the interface between backfilling and host rock in some repository concepts. For instance, the preferred option for the disposal of high-level waste (HLW) in Belgium is based on the supercontainer design, which consists of a carbon steel overpack surrounded by a thick concrete buffer (Bel et al., 2006). In the event of formation water interacting with cementitious materials, pore water solutions characterized by (highly) alkaline pH conditions will form. These boundary conditions define the chemical response of the radionuclides, but also influence the behaviour of neighbouring components of the multi-barrier system, e.g. bentonitic or argillaceous backfilling and host rock. Hardened cement paste or Sorel cement are considered to be main sorbing materials present in the near field of repositories for low- and intermediate-level waste (L/ILW). Hence, interactions of radionuclides with cementitious materials represent a very important mechanism retarding their mobility and potential migration from the near field (Wieland, 2014; Ochs et al., 2016). While the quantitative description of the sorption processes (usually in terms of sorption coefficients, i.e. Kd values) is a key input in the safety analysis of nuclear waste repositories, detailed mechanistic analysis and understanding of sorption phenomena provide additional scientific arguments and important process understanding, and thus enhance both the quality of safety arguments and the overall confidence in the safety assessment process. Research at KIT-INE dedicated to the interaction of cementitious materials with radionuclides is conducted in the context of different repository concepts, including clay (low- and high-ionic strength conditions), crystalline rock or rock salt. Experimental and theoretical studies are performed within the framework of national (GRAZ, BMWi) and international (CEBAMA and EURAD-CORI, EU Horizon 2020 Programme) projects, extending to third-party projects with several waste management organizations in Europe, e.g. SKB (Sweden), ONDRAF-NIRAS (Belgium) or BGE (Germany). The combination of classical experimental (wet chemistry) methods, advanced spectroscopic techniques and theoretical calculations provides both an accurate quantitative evaluation and a fundamental understanding of the sorption processes. Examples of recent studies at KIT-INE on radionuclide behaviour in cementitious systems in the context of both L/ILW and HLW will be presented in this contribution to explain methodologies, scientific approaches and results. The present state of knowledge as well as main remaining uncertainties affecting the retention processes of radionuclides in cementitious environments under different conditions will be critically discussed, also in view of current international research activities and repository projects.


2021 ◽  
Vol 1 ◽  
pp. 159-160
Author(s):  
Andrej Skerencak-Frech ◽  
Petra Panak ◽  
Kathy Dardenne ◽  
Jörg Rothe ◽  
Xavier Gaona ◽  
...  

Abstract. The Safety Case for a radioactive waste repository in deep geological formations requires detailed chemical and thermodynamic information on the stored radionuclides in their relevant oxidation states. Although a comprehensive summary of critically evaluated thermodynamic data is available via the blue book series of the NEA-TDB (“Nuclear Energy Agency – Thermochemical Database”), the majority of this data is limited to ambient conditions (Grenthe et al., 2020). In the case of the disposal of high-active, heat-producing waste, however, the near-field of the repository will experience increased temperatures at early operative phases for several hundred or a few thousand years. Radionuclides may come into contact with aquatic solutions or brines at elevated temperatures in the case of early canister failure. Besides other factors of the overall disposal concept (e.g. the geometry of the repository, type and amount of stored radionuclide inventories), host rock characteristics themselves limit the extent of the allowable temperature increase. For example, in clay formations the maximum temperature should stay at around or below ∼100∘C in order to avoid an irreversible change in the host rock retention capacity, whereas rock salt allows much higher temperatures of up to 200 ∘C. Increased temperatures will have a distinct impact on the geochemical behaviour of radionuclides, potentially affecting their mobility and retention in the near field. Besides reactions at the solid–liquid interface (e.g. dissolution/precipitation reactions of the waste matrix, sorption reactions of the radionuclides to surfaces), complexation reactions with inorganic and organic ligands present in the aqueous phase potentially affect migration behaviour of the radionuclides. A quantitative thermodynamic description of these processes requires standard stability constants (log⁡βn0(T)), as well as standard reaction enthalpies and entropies (ΔrHm,n0, ΔrSm,n0). The precise experimental determination of these data for all relevant radionuclide/ligand reactions requires a vast amount of time and effort. In this regard, reliable extrapolation methods in particular for standard stability constants valid for 25 ∘C to higher temperatures are considered to support a comprehensive description. Recently, the German Federal Ministry of Education and Research (BMBF)-funded collaborative research project “Therm AC” focused on the experimental determination of new thermodynamic data at higher temperatures, as well as the comparison with the analogous results yielded by extrapolation methods. The Thermochemical Database Project of the OECD-NEA (NEA-TDB) is currently in the process of preparing a comprehensive state-of-the-art report on the high temperature thermodynamics of radionuclides, further emphasizing the particular relevance of this interesting topic. Within this contribution, a critical overview on the recent advances in the field of high temperature studies of radionuclides in aqueous solutions will be given. Besides summarizing information on key technical aspects relevant for high temperature studies, the effect of increased temperatures on the complexation of trivalent actinides with chloride will be discussed in more detail in order to illustrate newly derived in-depth understanding of the impact of increased temperatures on the (geo)chemical behaviour of trivalent actinides on the molecular scale (Skerencak-Frech et al., 2014).


1985 ◽  
Vol 50 ◽  
Author(s):  
A. B. Muller ◽  
B. Fritz ◽  
A. Wyman ◽  
M. Snellman

AbstractThe OECD Nuclear Energy Agency is coordinating the development of a critically reviewed CODATA compatible chemical thermodynamic data base for ten radioelements important to various areas of nuclear technologies. Such a data base in itself is insufficient for modeling the speciation and solubility behaviour of radioelements in natural rock/water systems. Data must also be available for describing the rock phases present, which determine to a large extent the physico-chemical environment. Since a number of NEA Member countries are contemplating nuclear waste disposal in granitic environments, a data base for seventy-three minerals associated with granite is presented here, as a complement to the data base work on radioelements.


Sign in / Sign up

Export Citation Format

Share Document