scholarly journals Seismic anisotropy inferred from direct S-waves derived splitting measurements and its geodynamic implications beneath southeastern Tibetan Plateau

2016 ◽  
Author(s):  
Ashwani Kant Tiwari ◽  
Arun Singh ◽  
Tuna Eken ◽  
Nitin Grewal ◽  
Chandrani Singh

Abstract. The present study deals with detecting seismic anisotropy parameters beneath southeastern Tibet near Namche Barwa Mountain using splitting of the direct S-waves. We employed the reference station technique to remove the effects of source side anisotropy. Seismic anisotropy parameters, splitting time delay and fast polarization directions were estimated through analyses on a total of 501 splitting measurements obtained from direct-S waves from 25 earthquakes (> 5.5 magnitude) that were recorded at 42 stations of Namchebarwa seismic network. We observed a large variation in time delays ranging from 0.64 to 1.68 s but in most cases it is more than 1 s, which suggests for a highly anisotropic lithospheric mantle in the region. A comparison between direct S- and SKS-derived splitting parameters generally shows a close similarity although some discrepancies exist where null or negligible anisotropy is reported earlier using SKS. The seismic stations with hitherto null or negligible anisotropy are now supplemented with new measurements with clear anisotropic signatures. Our analyses indicate a sharp change in lateral variations of fast polarization directions (FPDs) from consistent ENE-SSW or E-W to NW-SE direction at the southeastern edge of Tibet. Comparison of the FPDs with global positioning system (GPS) measurements, absolute plate motion (APM) directions and surface geological features signify that the observed anisotropy and hence inferred deformation patterns are not only due to asthenospheric dynamics but it is a combination of lithospheric deformation and sub-lithospheric (asthenospheric) mantle dynamics. Splitting measurement using direct-S waves proves their utility to supplement the anisotropic measurements in the study region and fills the missing links that remain rather illusive due to lack of SKS measurements.

Solid Earth ◽  
2017 ◽  
Vol 8 (2) ◽  
pp. 435-452 ◽  
Author(s):  
Ashwani Kant Tiwari ◽  
Arun Singh ◽  
Tuna Eken ◽  
Chandrani Singh

Abstract. The present study deals with detecting seismic anisotropy parameters beneath southeastern Tibet near Namcha Barwa Mountain using the splitting of direct S waves. We employ the reference station technique to remove the effects of source-side anisotropy. Seismic anisotropy parameters, splitting time delays, and fast polarization directions are estimated through analyses of a total of 501 splitting measurements obtained from direct S waves from 25 earthquakes ( ≥  5.5 magnitude) that were recorded at 42 stations of the Namcha Barwa seismic network. We observe a large variation in time delays ranging from 0.64 to 1.68 s, but in most cases, it is more than 1 s, which suggests a highly anisotropic lithospheric mantle in the region. A comparison between direct S- and SKS-derived splitting parameters shows a close similarity, although some discrepancies exist where null or negligible anisotropy has been reported earlier using SKS. The seismic stations with hitherto null or negligible anisotropy are now supplemented with new measurements with clear anisotropic signatures. Our analyses indicate a sharp change in lateral variations of fast polarization directions (FPDs) from consistent SSW–ENE or W–E to NW–SE direction at the southeastern edge of Tibet. Comparison of the FPDs with Global Positioning System (GPS) measurements, absolute plate motion (APM) directions, and surface geological features indicates that the observed anisotropy and hence inferred deformation patterns are not only due to asthenospheric dynamics but are a combination of lithospheric deformation and sub-lithospheric (asthenospheric) mantle dynamics. Direct S-wave-based station-averaged splitting measurements with increased back-azimuths tend to fill the coverage gaps left in SKS measurements.


2020 ◽  
Author(s):  
Shiva Arvin ◽  
Farhad Sobouti ◽  
Keith Priestley ◽  
Abdolreza Ghods ◽  
Seyed Khalil Motaghi ◽  
...  

<p><span>The present tectonics of Iran has resulted from the continental convergence of the Arabian and Eurasian plates. Our study area, in NW Iran comprises a part of this collision zone and consists of an assemblage of distinct lithospheric blocks including the central Iranian Plateau, the South Caspian Basin, and the Talesh western Alborz Mountains. A proper knowledge of mantle flow field is required to bettwer constrain mantle kinematics in relation to the dynamics of continental deformation in NW Iran. To achieve this aim, we examined splitting of teleseismic shear waves (e.g. SKS and S) arriving with steep arrival angles beneath the receiver, which provide excellent lateral resolution in the upper mantle. We used data from 68 temporary broadband stations with varying operation periods (4 to 31 months) along 3 linear profiles. We perfomed splitting analyses on SK(K)S and direct S waves. </span>Resultant splitting parameters obtained from both shear phases exhibit broad similarities. Relatively large time delays observed for direct S-waves, however, are anticipated since these waves travel longer than SKS along a non-vertical propagation path in an anisotropic layer. Overall, the fast polarization directions (FPDs) in the Alborz, Talesh, Tarom Mountain and in NW Iran indicate a strong consistency with NE-SW anisotropic orientations. Besides, we observe a good accordance between S and SKS results. A comparison of splitting parameters with the absolute plate motion (APM) vector and structural trends in Iran and eastern Turkey suggests asthenospheric flow field as the dominant source for observed seismic anisotropy. The lithospheric layer beneath these regions is relatively thin (compared to the adjacent Zagros region), explaining why it appears to only make a partial contribution to the observed anisotropy. The stations located in central Iran just southwest of the Alborz yield angular deviations from the general NE-SW trend as this may be explained by changing style of deformation across the different tectonic blocks. These stations indicate significant misfit between SK(K)S and direct S-waves that could be caused by local heterogeneities developed due to a diffuse boundary from the flow organization in the upper mantle of central Iran. Another possibility for large differences between two types of waves might be reflect the anisotropic structure of a remnant slab segment or a foundered lithospheric root beneath central Iran with a volume small enough to be detected by SKS phases, but not by the direct S waves.</p>


2021 ◽  
Author(s):  
John Cornthwaite ◽  
Fenglin Niu ◽  
Alan Levander ◽  
Michael Schmitz ◽  
Germán Prieto ◽  
...  

<p>     The southernmost edge of the Caribbean (CAR) plate, a buoyant large igneous province, subducts shallowly beneath northwestern South America (NWSA) at a trench that lies northwest of Colombia. Recent finite frequency P-wave tomography results show a segmented CAR subducting at a shallow angle under the Santa Marta Massif to the Serrania de Perijá (SdP) before steepening while a detached segment beneath the Mérida Andes (MA) descends into the mantle transition zone. The dynamics of shallow subduction are poorly understood. Plate coupling between the flat subducting CAR and the overriding NWSA is proposed to have driven the uplift of the MA. In this study we analyze SKS shear wave splitting to investigate the seismic anisotropy beneath the slab segments to relate their geometry to mantle dynamics. We also use local S splitting to investigate the seismic anisotropy between the slab segments and the overriding plate. The data were recorded by a 65-element portable broadband seismograph network deployed in NWSA and 40 broadband stations of the Venezuelan and Colombian national seismograph networks.</p><p>     SKS fast polarization axes are measured generally trench-perpendicular (TP) west of the SdP but transition to trench-parallel (TL) at the SdP where the slab was imaged steepening into the mantle, consistent with previous studies. West of the MA the fast axis is again TP but transitions to TL under the MA. This second transition from TP to TL is likely due to mantle material being deflected around a detached slab under the MA. Local S fast polarization axes are dominantly TP throughout the study area west of the Santa Marta Massif and are consistent with slab-entrained flow. Under the Santa Marta Massif the fast axis is TL for reasons we do not yet understand.</p>


2020 ◽  
Author(s):  
Ceyhun Erman ◽  
Seda Yolsal-Çevikbilen ◽  
Tuna Eken ◽  
Tuncay Taymaz

<p>Seismic anisotropy studies can provide important constraints on geodynamic processes and deformation styles in the upper mantle of tectonically active regions. Seismic anisotropy parameters (e.g. delay time and fast polarization direction) can give hints at the past and recent deformations and can be most conventionally obtained through core-mantle refracted SKS phase splitting measurements. In order to explore the complexity of anisotropic structures in the upper mantle of a large part of the Aegean region, in this study, we estimate splitting parameters beneath 25 broad-band seismic stations located at NW Anatolia, North Aegean Sea and Greece mainland. To achieve this we employ both transverse energy minimization and eigenvalue methods. Waveform data of selected earthquakes (with M<sub>w</sub> ≥ 5.5; 2008-2018 and with epicentral distances between 85°–120°) were retrieved from Earthquake Data Center System of Turkey (AFAD; http://tdvm.afad.gov.tr/) and European Integrated Data Archive (EIDA; http://orfeus-eu.org/webdc3/). A quite large data set, the majority of which have not been studied before, were evaluated in order to estimate reliable non-null and null results. In general, station-averaged splitting parameters mainly exhibit the NE-SW directed fast polarization directions throughout the study area. These directions can be explained by the lattice-preferred orientation of olivine minerals in the upper mantle induced by the mantle flow related to the roll-back process of the Hellenic slab. We further observe that station-averaged splitting time delays are prone to decrease from north to south of the Aegean region probably changing geometry of mantle wedge with a strong effect on  the nature of mantle flow along this direction. The uniform distribution of splitting parameters as a function of back-azimuths of earthquakes refers to a single-layer horizontal anisotropy for the most part of the study area. However, back azimuthal variations of splitting parameters beneath most of northerly located seismic stations (e.g., GELI, SMTH etc.) imply the presence of a double-layer anisotropy. To evaluate this, we performed various synthetic tests especially beneath the northern part of study region. Yet, it still remains controversial issue due to the large azimuthal gap and thus requires further modelling which may involve the use of joint data sets.</p>


2020 ◽  
Vol 224 (3) ◽  
pp. 1684-1704
Author(s):  
Alexandra Mauerberger ◽  
Valérie Maupin ◽  
Ólafur Gudmundsson ◽  
Frederik Tilmann

SUMMARY We use the recently deployed ScanArray network of broad-band stations covering most of Norway and Sweden as well as parts of Finland to analyse the propagation of Rayleigh waves in Scandinavia. Applying an array beamforming technique to teleseismic records from ScanArray and permanent stations in the study region, in total 159 stations with a typical station distance of about 70 km, we obtain phase velocities for three subregions, which collectively cover most of Scandinavia (excluding southern Norway). The average phase dispersion curves are similar for all three subregions. They resemble the dispersion previously observed for the South Baltic craton and are about 1 per cent slower than the North Baltic shield phase velocities for periods between 40 and 80 s. However, a remarkable sin(1θ) phase velocity variation with azimuth is observed for periods >35 s with a 5 per cent deviation between the maximum and minimum velocities, more than the overall lateral variation in average velocity. Such a variation, which is incompatible with seismic anisotropy, occurs in northern Scandinavia and southern Norway/Sweden but not in the central study area. The maximum and minimum velocities were measured for backazimuths of 120° and 300°, respectively. These directions are perpendicular to a step in the lithosphere–asthenosphere boundary (LAB) inferred by previous studies in southern Norway/Sweden, suggesting a relation to large lithospheric heterogeneity. In order to test this hypothesis, we carried out 2-D full-waveform modeling of Rayleigh wave propagation in synthetic models which incorporate a steep gradient in the LAB in combination with a pronounced reduction in the shear velocity below the LAB. This setup reproduces the observations qualitatively, and results in higher phase velocities for propagation in the direction of shallowing LAB, and lower ones for propagation in the direction of deepening LAB, probably due to the interference of forward scattered and reflected surface wave energy with the fundamental mode. Therefore, the reduction in lithospheric thickness towards southern Norway in the south, and towards the Atlantic ocean in the north provide a plausible explanation for the observed azimuthal variations.


2022 ◽  
Author(s):  
D. Rhodri Davies ◽  
Stephan C. Kramer ◽  
Siavash Ghelichkhan ◽  
Angus Gibson

Abstract. Firedrake is an automated system for solving partial differential equations using the finite element method. By applying sophisticated performance optimisations through automatic code-generation techniques, it provides a means to create accurate, efficient, flexible, easily extensible, scalable, transparent and reproducible research software, that is ideally suited to simulating a wide-range of problems in geophysical fluid dynamics. Here, we demonstrate the applicability of Firedrake for geodynamical simulation, with a focus on mantle dynamics. The accuracy and efficiency of the approach is confirmed via comparisons against a suite of analytical and benchmark cases of systematically increasing complexity, whilst parallel scalability is demonstrated up to 12288 compute cores, where the problem size and the number of processing cores are simultaneously increased. In addition, Firedrake's flexibility is highlighted via straightforward application to different physical (e.g. complex nonlinear rheologies, compressibility) and geometrical (2-D and 3-D Cartesian and spherical domains) scenarios. Finally, a representative simulation of global mantle convection is examined, which incorporates 230 Myr of plate motion history as a kinematic surface boundary condition, confirming its suitability for addressing research problems at the frontiers of global mantle dynamics research.


1997 ◽  
Vol 40 (3) ◽  
Author(s):  
L. Margheriti ◽  
C. Nostro ◽  
A. Amato ◽  
M. Cocco

Anisotropy is a common property of the Earth's crust and the upper mantle; it is related to the strain field of the medium and therefore to geodynamics. In this paper we describe the different possible origins of anisotropic behavior of the seismic waves and the seismological techniques used to define anisotropic bodies. In general it is found that the fast polarization direction is parallel to the absolute plate motion in cratonic areas, to the spreading direction near rifts or extensional zones, and to the main structural features in transpressive regimes. The delay times between fast and slow waves reflect the relative strength and penetration at depth of the deformation field. The correspondence between surface structural trends and anisotropy in the upper mantle, found in many regions of the world, strongly suggest that orogenic processes involve not only the shallow crust but the entire lithosphere. Recently in Italy both shear wave splitting analysis and Pn inversion were applied to define the trend of seismic anisotropy. Along the Northern Appeninic arc fast directions follow the strike of the arc (i.e., parallel to the strike of the Miocene-Pleistocene compressional features), whereas in the Tyrrhenian zone fast directions are about E-W SW-NE; parallel to the post-Miocene extension that is thought to have reoriented the mantle minerals fabric in the astenosphere.


2017 ◽  
Vol 112 ◽  
pp. 31-45 ◽  
Author(s):  
Awad A. Lemnifi ◽  
Abdelsalam Elshaafi ◽  
Özgür Karaoğlu ◽  
Mohamed K. Salah ◽  
Nassib Aouad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document