scholarly journals Modeling of the in situ state of stress in elastic layered rock subject to stress and strain-driven tectonic forces

2016 ◽  
Author(s):  
Vincent Roche ◽  
Mirko van der Baan

Abstract. In this study we describe and compare eight different strategies to predict the depth variation of stress within a layered rock formation. This reveals the inherent uncertainties in stress prediction from elastic properties and stress measurements, as well as the geologic implications of the different models. The predictive strategies are based on well log data and in some cases on in situ stress measurements, combined with the weight of the overburden rock, the pore pressure, the depth variation in rock properties, and tectonic effects. We contrast and compare stresses predicted purely using theoretical models with those constrained by in situ measurements. We also explore the role of the applied boundary conditions mimicking two fundamental models of tectonic effects, namely the stress or strain-driven models. In both models layer to layer tectonic stress variations are added to initial predictions due to vertical variation in rock elasticity, consistent with natural observations, yet describing very different controlling mechanisms. Layer to layer stress variations are caused by either local elastic strain accommodation for the strain-driven model, or stress transfers for the stress-driven model. As a consequence, stress predictions can depend strongly on the implemented prediction philosophy and the underlying implicit and explicit assumptions, even for media with identical elastic parameters and stress measurements. This implies that stress predictions have large uncertainties, even if local measurements and boundary conditions are honored.

Solid Earth ◽  
2017 ◽  
Vol 8 (2) ◽  
pp. 479-498 ◽  
Author(s):  
Vincent Roche ◽  
Mirko van der Baan

Abstract. In this study we describe and compare eight different strategies to predict the depth variation of stress within a layered rock formation. This reveals the inherent uncertainties in stress prediction from elastic properties and stress measurements, as well as the geologic implications of the different models. The predictive strategies are based on well log data and in some cases on in situ stress measurements, combined with the weight of the overburden rock, the pore pressure, the depth variation in rock properties, and tectonic effects. We contrast and compare stresses predicted purely using theoretical models with those constrained by in situ measurements. We also explore the role of the applied boundary conditions that mimic two fundamental models of tectonic effects, namely the stress- or strain-driven models. In both models, layer-to-layer tectonic stress variations are added to initial predictions due to vertical variation in rock elasticity, consistent with natural observations, yet describe very different controlling mechanisms. Layer-to-layer stress variations are caused by either local elastic strain accommodation for the strain-driven model, or stress transfers for the stress-driven model. As a consequence, stress predictions can depend strongly on the implemented prediction philosophy and the underlying implicit and explicit assumptions, even for media with identical elastic parameters and stress measurements. This implies that stress predictions have large uncertainties, even if local measurements and boundary conditions are honored.


1983 ◽  
Vol 4 ◽  
pp. 124-128 ◽  
Author(s):  
Jerome B. Johnson

Two methods are presented for calculating ice loads on structures using measurements from sensors imbedded in a floating ice sheet and from instruments attached to a structure. The first method uses a mathematical model describing ice/structure interaction for a cylindrical structure to interpret stress measurements. This technique requires only a few sensors to develop an estimate of ice loads, However, analytical and experimental results indicate that using a mathematical model to interpret stress measurements can result in inaccurate load estimates due to uncertainty in the accuracy of the model and and the uncertainty of using local ice stresses to calculate total ice forces. The second method of calculating ice loads on structures utilizes Euler and Cauchy’s stress principle. In this, the surface integral method, the force acting on a structure is determined by summing the stress vectors acting on a surface which encompasses the structure. Application of this technique requires that the shear and normal components of stress be known along the surface. Sensors must be spaced close enough together so that local stress variations due to the process of ice failure around a structure can be detected. The surface integral method is a useful technique for interpreting load and stress measurements since a knowledge of the mechanism of ice/structure interactions is not needed. The accuracy of the method is determined by the density of sensors along the surface. A disadvantage of the technique is that a relatively large number of sensors are needed to determine the stress tensor along the surface of interest.The surface integral method can be used to examine the effects of grounded ice rubble on structural ice loads. Two instrumented surfaces, one enclosing a structure and the other enclosing the structure and rubble field can be used to estimate the load acting only on the structure and also on the structure/ rubble-field system.


1983 ◽  
Vol 4 ◽  
pp. 124-128
Author(s):  
Jerome B. Johnson

Two methods are presented for calculating ice loads on structures using measurements from sensors imbedded in a floating ice sheet and from instruments attached to a structure. The first method uses a mathematical model describing ice/structure interaction for a cylindrical structure to interpret stress measurements. This technique requires only a few sensors to develop an estimate of ice loads, However, analytical and experimental results indicate that using a mathematical model to interpret stress measurements can result in inaccurate load estimates due to uncertainty in the accuracy of the model and and the uncertainty of using local ice stresses to calculate total ice forces. The second method of calculating ice loads on structures utilizes Euler and Cauchy’s stress principle. In this, the surface integral method, the force acting on a structure is determined by summing the stress vectors acting on a surface which encompasses the structure. Application of this technique requires that the shear and normal components of stress be known along the surface. Sensors must be spaced close enough together so that local stress variations due to the process of ice failure around a structure can be detected. The surface integral method is a useful technique for interpreting load and stress measurements since a knowledge of the mechanism of ice/structure interactions is not needed. The accuracy of the method is determined by the density of sensors along the surface. A disadvantage of the technique is that a relatively large number of sensors are needed to determine the stress tensor along the surface of interest.The surface integral method can be used to examine the effects of grounded ice rubble on structural ice loads. Two instrumented surfaces, one enclosing a structure and the other enclosing the structure and rubble field can be used to estimate the load acting only on the structure and also on the structure/ rubble-field system.


2002 ◽  
Vol 749 ◽  
Author(s):  
Vincent Barrioz ◽  
Stuart J. C. Irvine ◽  
D. Paul

ABSTRACTZnS is a material of choice in the optical coating industry for its optical properties and broad transparency range. One of the drawbacks of ZnS is that it develops high compressive intrinsic stress resulting in large residual stress in the deposited layer. This paper concentrates on the evolution of residual stress reduction in ZnS single layers, depending upon their deposition rate or the substrate temperature during deposition (i.e. 22 °C and 133 °C). The substrate preparation is addressed for consideration of layer adhesion. Residual stress of up to − 550 MPa has been observed in amorphous/poor polycrystalline ZnS layers, deposited on CMX and Float glass type substrates, by electron beam evaporation at 22 °C, with a surface roughness between 0.4 and 0.8 nm. At 133 °C, the layer had a surface roughness of 1 nm, the residual stress in the layer decreased to − 150 MPa, developing a wurtzite structure with a (002) preferred orientation. In situ stress measurements, using a novel optical approach with a laser-fibre system, were carried out to identify the various sources of stress. A description of this novel in situ stress monitor and its advantages are outlined. The residual stress values were supported by two ex situ stress techniques. The surface morphology analysis of the ZnS layers was carried out using an atomic force microscope (AFM), and showed that stress reduced layers actually gave rougher surfaces.


1982 ◽  
Vol 15 ◽  
Author(s):  
W. S. Fyfe

ABSTRACTSelection of the best rock types for radwaste disposal will depend on their having minimal permeability, maximal flow dispersion, minimal chance of forming new wide aperture fractures, maximal ion retention, and minimal thermal and mining disturbance. While no rock is perfect, thinly bedded complex sedimentary sequences may have good properties, either as repository rocks, or as cover to a repository.Long time prediction of such favorable properties of a rock at a given site may be best modelled from studies of in situ rock properties. Fracture flow, dispersion history, and geological stability can be derived from direct observations of rocks themselves, and can provide the parameters needed for convincing demonstration of repository security for appropriate times.


Sign in / Sign up

Export Citation Format

Share Document