Modeling In-situ tectonic stress state and maximum horizontal stress azimuth in the Central Algerian Sahara – A geomechanical study from El Agreb, El Gassi and Hassi Messaoud fields

2021 ◽  
Vol 88 ◽  
pp. 103831
Author(s):  
Rafik Baouche ◽  
Souvik Sen ◽  
Rabah Chaouchi ◽  
Shib Sankar Ganguli
2021 ◽  
Author(s):  
Anna Vladimirovna Norkina ◽  
Iaroslav Olegovich Simakov ◽  
Yuriy Anatoljevich Petrakov ◽  
Alexey Evgenjevich Sobolev ◽  
Oleg Vladimirovich Petrashov ◽  
...  

Abstract This article is a continuation of the work on geomechanically calculations for optimizing the drilling of horizontal wells into the productive reservoir M at the Boca de Haruco field of the Republic of Cuba, presented in the article SPE-196897. As part of the work, an assessment of the stress state and direction was carried out using geological and geophysical information, an analysis of the pressure behavior during steam injections, cross-dipole acoustics, as well as oriented caliper data in vertical wells. After the completion of the first part of the work, the first horizontal wells were successfully drilled into the M formation. According to the recommendations, additional studies were carried out: core sampling and recording of micro-imager logging in the deviated sections. Presence of wellbore failures at the inclined sections allowed to use the method of inverse in-situ stress modeling based on image logs interpretation. The classification of wellbore failures by micro-imager logging: natural origin and violations of technogenic genesis is carried out. The type of breakout is defined. The result of the work was the determination of the stress state and horizontal stresses direction. In addition, the article is supplemented with the calculation of the maximum horizontal stress through the stress regime identifier factor.


Geophysics ◽  
2021 ◽  
pp. 1-97
Author(s):  
kai lin ◽  
Bo Zhang ◽  
Jianjun Zhang ◽  
Huijing Fang ◽  
Kefeng Xi ◽  
...  

The azimuth of fractures and in-situ horizontal stress are important factors in planning horizontal wells and hydraulic fracturing for unconventional resources plays. The azimuth of natural fractures can be directly obtained by analyzing image logs. The azimuth of the maximum horizontal stress σH can be predicted by analyzing the induced fractures on image logs. The clustering of micro-seismic events can also be used to predict the azimuth of in-situ maximum horizontal stress. However, the azimuth of natural fractures and the in-situ maximum horizontal stress obtained from both image logs and micro-seismic events are limited to the wellbore locations. Wide azimuth seismic data provides an alternative way to predict the azimuth of natural fractures and maximum in-situ horizontal stress if the seismic attributes are properly calibrated with interpretations from well logs and microseismic data. To predict the azimuth of natural fractures and in-situ maximum horizontal stress, we focus our analysis on correlating the seismic attributes computed from pre-stack and post-stack seismic data with the interpreted azimuth obtained from image logs and microseismic data. The application indicates that the strike of the most positive principal curvature k1 can be used as an indicator for the azimuth of natural fractures within our study area. The azimuthal anisotropy of the dominant frequency component if offset vector title (OVT) seismic data can be used to predict the azimuth of maximum in-situ horizontal stress within our study area that is located the southern region of the Sichuan Basin, China. The predicted azimuths provide important information for the following well planning and hydraulic fracturing.


2021 ◽  
Author(s):  
Jianguo Zhang ◽  
Karthik Mahadev ◽  
Stephen Edwards ◽  
Alan Rodgerson

Abstract Maximum horizontal stress (SH) and stress path (change of SH and minimum horizontal stress with depletion) are the two most difficult parameters to define for an oilfield geomechanical model. Understanding these in-situ stresses is critical to the success of operations and development, especially when production is underway, and the reservoir depletion begins. This paper introduces a method to define them through the analysis of actual minifrac data. Field examples of applications on minifrac failure analysis and operational pressure prediction are also presented. It is commonly accepted that one of the best methods to determine the minimum horizontal stress (Sh) is the use of pressure fall-off analysis of a minifrac test. Unlike Sh, the magnitude of SH cannot be measured directly. Instead it is back calculated by using fracture initiation pressure (FIP) and Sh derived from minifrac data. After non-depleted Sh and SH are defined, their apparent Poisson's Ratios (APR) are calculated using the Eaton equation. These APRs define Sh and SH in virgin sand to encapsulate all other factors that influence in-situ stresses such as tectonic, thermal, osmotic and poro-elastic effects. These values can then be used to estimate stress path through interpretation of additional minifrac data derived from a depleted sand. A geomechanical model is developed based on APRs and stress paths to predict minifrac operation pressures. Three cases are included to show that the margin of error for FIP and fracture closure pressure (FCP) is less than 2%, fracture breakdown pressure (FBP) less than 4%. Two field cases in deep-water wells in the Gulf of Mexico show that the reduction of SH with depletion is lower than that for Sh.


2021 ◽  
Vol 44 (2) ◽  
pp. 95-105
Author(s):  
Agus M. Ramdhan

In situ stress is importance in the petroleum industry because it will significantly enhance our understanding of present-day deformation in a sedimentary basin. The Northeast Java Basin is an example of a tectonically active basin in Indonesia. However, the in situ stress in this basin is still little known. This study attempts to analyze the regional in situ stress (i.e., vertical stress, minimum and maximum horizontal stresses) magnitude and orientation, and stress regime in the onshore part of the Northeast Java Basin based on twelve wells data, consist of density log, direct/indirect pressure test, and leak-off test (LOT) data. The magnitude of vertical (  and minimum horizontal (  stresses were determined using density log and LOT data, respectively. Meanwhile, the orientation of maximum horizontal stress  (  was determined using image log data, while its magnitude was determined based on pore pressure, mudweight, and the vertical and minimum horizontal stresses. The stress regime was simply analyzed based on the magnitude of in situ stress using Anderson’s faulting theory. The results show that the vertical stress ( ) in wells that experienced less erosion can be determined using the following equation: , where  is in psi, and z is in ft. However, wells that experienced severe erosion have vertical stress gradients higher than one psi/ft ( . The minimum horizontal stress ( ) in the hydrostatic zone can be estimated as, while in the overpressured zone, . The maximum horizontal stress ( ) in the shallow and deep hydrostatic zones can be estimated using equations: and , respectively. While in the overpressured zone, . The orientation of  is ~NE-SW, with a strike-slip faulting stress regime.


2018 ◽  
Vol 6 (3) ◽  
pp. T759-T781 ◽  
Author(s):  
Samin Raziperchikolaee ◽  
Mark Kelley ◽  
Neeraj Gupta

Assessing the mechanical integrity of the caprock-reservoir system is necessary to evaluate the practical storage capacity for geologic [Formula: see text] storage. We used a combination of well-log and experimental data to estimate the statistical distribution (mean and variance) of rock mechanical properties of Cambrian-Ordovician strata within the Northern Appalachian region of Ohio and studied their heterogeneity throughout the study area. Empirical correlations between static-dynamic moduli of carbonate and sandstone formations of the Northern Appalachian Basin were developed. The state of stress (the orientation and magnitude of the maximum horizontal stress) for caprock and reservoir formations in the Cambrian-Ordovician sequence was determined at multiple well locations to understand the regional variability of these properties throughout the study area. The maximum horizontal stress ([Formula: see text]) azimuth was estimated from image logs for six wells and S-wave anisotropy data for five wells. The [Formula: see text] magnitude was estimated by analytical and numerical modeling of stresses around the wellbore calibrated to the occurrence of wellbore breakouts and drilling-induced fractures in three wells as a function of depth. The results of assessing the [Formula: see text] magnitude and stress regime in the caprock and reservoirs in the Cambrian-Ordovician sequence using rock mechanical data acquired in this study, well-log data, and drilling data indicate that both parameters vary throughout the study area. In this work, we determined how integrating different types of data from multiple wells allowed us to estimate mechanical properties and characterize the spatial variability (laterally and vertically) of in situ stress for Cambrian-Ordovician caprock and reservoirs throughout the study area. A combination of different methods — numerical, analytical, and stress polygon — is used to estimate the in situ stress magnitude, especially [Formula: see text], regionally on a formation-by-formation basis. The results of this work can be used to improve our understanding the complex nature of stress in the Northern Appalachian Basin.


2012 ◽  
Vol 52 (2) ◽  
pp. 697
Author(s):  
David Tassone ◽  
Simon Holford ◽  
Rosalind King ◽  
Guillaume Backé

A detailed understanding of the in-situ stress tensor within energy-rich basins is integral for planning successful drilling completions, evaluating the reactivation potential of sealing faults and developing unconventional plays where fracture stimulation strategies are required to enhance low permeability reservoirs. Newly available leak-off test results interpreted using a new method for analysing leak-off test data constrains the minimal horizontal stress magnitude for the offshore Shipwreck Trough wells to be ∼20 MPa/km, which is similar to the vertical stress magnitude derived from wireline data for depths shallower than ∼2–2.5 km. Breakouts interpreted from image log data reveal a ∼northwest–southeast maximum horizontal stress orientation and formation pressure tests confirm near-hydrostatic conditions for all wells. The new method for analysing leak-off test data has constrained the upper limit of the maximum horizontal stress magnitude to be the greatest, indicating a reverse-to-strike-slip faulting regime, which is consistent with neotectonic faulting evidence. Petrophysical wireline data and image log data to characterise extant natural fracture populations within conventional reservoirs and stratigraphic units that may be exploited as future unconventional reservoirs have also been used. These fracture sets are compared with possible fracture populations recognised in contiguous, high-fidelity 3D seismic datasets using a new method for identifying fracture systems based on attribute mapping techniques. This study represents the first of its kind in the Otway Basin. Combined analysis of the in-situ stress tensor and fracture density and geometries provides a powerful workflow for constraining fracture-related fluid flow pathways in sedimentary basins.


2019 ◽  
Vol 4 (1) ◽  
pp. 292-304
Author(s):  
I.L. Pankov ◽  

System of physical equations was obtained, which determines the relationship between main stresses and corresponding strains for the conditions of the all-round compression tectonic stress field in a virgin compacted intact massif of rocks. Estimated formulas for determining the maximum and minimum horizontal stresses of an intact massif, which is under conditions of plane-directional tectonic influence depending on the factors of vertical pressure, porosity and deformation modulus of rocks, are obtained. The behavior of the horizontal stress distribution from the vertical pressure is considered under the influence of various factors.


2011 ◽  
Author(s):  
Hisao Ito ◽  
Kazumasa Kato ◽  
Takatoshi Ito ◽  
François Henri Cornet

1999 ◽  
Vol 2 (01) ◽  
pp. 62-68 ◽  
Author(s):  
T.L. Blanton ◽  
J.E. Olson

Summary An improved method of calibrating in-situ stress logs was validated with data from two wells. Horizontal stress profiles are useful for hydraulic fracture design, wellbore stability analysis, and sand production prediction. The industry-standard method of estimating stresses from logs is based on overburden, Poisson's ratio, and pore pressure effects and gives an estimate of minimum horizontal stress. The model proposed here adds effects of temperature and tectonics and outputs of minimum and maximum horizontal stress magnitudes, which are particularly important to the successful completion of horizontal and deviated wells. This method was validated using data collected from a GRI research well and a Mobil well. Seven microfrac stress tests in GRI's Canyon Gas Sands Well of Sutton County, Texas, provided a means of comparing the predictive capability of different methods. First, one of the seven stress tests was selected as a calibration standard for the stress log. Then the results obtained from the two calibration methods were compared to stress magnitudes from the other six stress tests. This process was repeated using each of the seven stress tests as a calibration standard and comparing predictions to the other six. In every case, the method incorporating tectonic strain and thermal effects produced significantly more accurate values. The Mobil well is located in the Lost Hills Field in California, and pre-frac treatment breakdown tests were used to calibrate a log-derived stress profile. All of the data were used simultaneously to get a best fit for the log-derived stress. The log and its fracture height growth implications compared favorably with available fracture diagnostic data, and maximum horizontal stress values were consistent with published values for a similar, nearby reservoir. Introduction Advances in well completion technology have made accurate profiles of horizontal stresses more important to successful field development. Data on in-situ stress have always been important to hydraulic fracture design, wellbore stability analysis, and sand production prediction. More recent work has shown that accurate stress profiles can be used to optimize fracturing of horizontal wells and designing multizone fracture treatments. In fracturing horizontal wells, stress profiles can be used to select zones for the horizontal section that optimize fracture height.1 For multizone fracturing, the success of advanced limited-entry techniques depends on having accurate profiles of horizontal stresses.2 Theory Conventional Method. The industry-standard method3-9 of calculating stresses from logs is based on the following equation: σ h m i n = μ 1 − μ ( σ v e r t − α p p ) + α p p . ( 1 ) The shmin formula is obtained by solving linear poroelasticity equations for horizontal stress with vertical stress set equal to the overburden and horizontal strains set to zero. The only deformation allowed is uniaxial strain in the vertical direction. Overburden stress, svert, is determined from an integrated density log. Poisson's ratio, m, is calculated from compressional and shear wave velocities given by an acoustic log. When independent measures of horizontal stress magnitudes are available from microfracs or extended leak-off tests, there is often a discrepancy between the log-derived and measured values, leading to the conclusion that the uniaxial strain assumption inherent to Eq. (1) is inadequate. In order to improve the estimated stress values, an adjustment (calibration) is made by adding an additional stress term to Eq. (1), thereby shifting the profile to match the measured values.4-8 For the purposes of this article, a constant shift with depth is used, stect which in some cases has been referred to as tectonic stress.5 Eq. (1) then becomes what we term here the conventional method stress equation: σ h m i n = μ 1 − μ ( σ v e r t − α p p ) + α p p + σ t e c t , ( 2 ) where σ t e c t = { σ h m i n ′ − μ ′ 1 − μ ′ ( σ v e r t ′ − α p ′ p ′ ) − α p ′ p ′ } . ( 3 ) The primes indicate parameter values at the calibration depth, z¢ where a measure of the minimum horizontal stress, σhmin′, is available. When measured values are available for several zones, slightly different calibration techniques are used, such as multiplying the log-based stress by a constant factor and adding a "tectonic" gradient.6 These calibrations have physical implications. When horizontal stress is applied as in Eq. (2), the zero lateral strain boundary conditions used to derive Eq. (1) are no longer appropriate. If we assume the strain in the direction orthogonal to the applied tectonic stress is zero (plane strain), the normal strain in the direction of the applied calibration stress, [epsiv] (z), can be written as ε ( z ) = E ( z ) 1 − μ ( z ) 2 σ t e c t , ( 4 ) where E and m are functions of depth. Given that typical geologic sequences are layered in elastic moduli, Eq. (4) implies that a constant tectonic stress calibration [exemplified in Eqs. (2) and (3)] results in horizontal strains that may be discontinuous across layer boundaries, which is a nonphysical consequence of the conventional log-derived stress calibration approach.


Sign in / Sign up

Export Citation Format

Share Document