referee comments to: "Influence of slope aspect on the microbial properties of rhizospheric and non-rhizospheric soil on the Loess Plateau, China"

2018 ◽  
Author(s):  
Anonymous
2018 ◽  
Author(s):  
Ze Min Ai ◽  
Jiao Yang Zhang ◽  
Hong Fei Liu ◽  
Sha Xue ◽  
Guo Bin Liu

Abstract. Slope aspect is an important topographic factor, but its effect on the microbial properties of grassland rhizospheric soil (RS) and non-rhizospheric soil (NRS) remain unclear. A field experiment was conducted at the Ansai Research Station on the Loess Plateau in China to test the influence of slope aspects (south-facing, north-facing, and northeast-facing slopes, all with Artemisia sacrorum as the dominant species) on RS and NRS microbial biomass carbon (MBC) and phospholipid fatty acid (PLFA) contents, and the rhizospheric effect (RE) of various microbial indices. MBC content differed significantly among the slope aspects in RS but not in NRS, and RE for MBC content in the south-facing slope was larger than that in the north-facing slope. RS total, bacterial, and gram-positive bacterial PLFA contents in the south-facing slope were significantly lower than those in the north- and northeast-facing slopes, and RS gram-negative bacterial (G-) and actinomycete PLFA contents in the south-facing slope were significantly lower than those in the north-facing slope. Differently, NRS total, bacterial, and G- PLFA contents in the north-facing slope were significantly higher than those in the south- and northeast-facing slopes, and NRS fungal and actinomycete PLFA contents in the north- and south-facing slopes were significantly higher than those in the northeast-facing slope. RE for all PLFA contents except fungal in the northeast-facing slope were higher than those in the south-facing slope. Slope aspect significantly but differentially affected the microbial properties in RS and NRS, and the variable influence was due an evident RE for most microbial properties.


Solid Earth ◽  
2018 ◽  
Vol 9 (5) ◽  
pp. 1157-1168 ◽  
Author(s):  
Ze Min Ai ◽  
Jiao Yang Zhang ◽  
Hong Fei Liu ◽  
Sha Xue ◽  
Guo Bin Liu

Abstract. Slope aspect is an important topographic factor in the micro-ecosystem environment, but its effect on the microbial properties of grassland rhizospheric soil (RS) and non-rhizospheric soil (NRS) remain unclear. A field experiment was conducted at the Ansai Research Station on the Loess Plateau in China to test the influence of slope aspects (south-facing, north-facing, and northwest-facing slopes, all with Artemisia sacrorum as the dominant species) on RS and NRS microbial biomass carbon (MBC) contents, phospholipid fatty acid (PLFA) contents, and the rhizospheric effect (RE) of various microbial indices. Soil samples were collected from the three slope aspects, including rhizospheric and non-rhizospheric region, and analyzed to determine the various related microbial indices. The results showed that MBC content differed significantly among the slope aspects in RS but not in NRS, and the RE for MBC content in the south-facing slope was larger than that in the north-facing slope. RS total, bacterial, and Gram-positive bacterial PLFA contents in the south-facing slope were significantly lower than those in the north- and northwest-facing slopes, and RS Gram-negative bacterial (G−) and actinomycete PLFA contents in the south-facing slope were significantly lower than those in the north-facing slope. In contrast, NRS total, bacterial, and G− PLFA contents in the north-facing slope were significantly higher than those in the south- and northwest-facing slopes, and NRS fungal and actinomycete PLFA contents in the north- and south-facing slopes were significantly higher than those in the northwest-facing slope. RE for all PLFA contents except fungal in the northwest-facing slope were higher than those in the south-facing slope. Slope aspect significantly but differentially affected the microbial properties in RS and NRS, and the variable influence was due to an evident RE for most microbial properties.


2011 ◽  
Vol 356-360 ◽  
pp. 2422-2429 ◽  
Author(s):  
Chao Zhang ◽  
Sha Xue ◽  
Guo Bin Liu ◽  
Chang Sheng Zhang

Abandoning cropland to enable recovery of the natural vegetation has been implemented during the past decade to restore the soil quality in the Loess Plateau, China. However, natural succession on cropland in the different slope aspect is different. The present study aimed at investigating the change in soil chemical and microbial properties abandoned farmland across time, and also to compare the difference of soil chemical and microbial properties in north slope and south slope on the Loess Plateau. The results showed that the slope aspect greatly affected the soil chemical and microbial properties after the cropland was abandoned, this could be attributed to the different precipitation and temperature in the two slopes. Compared with the north slope in which the organic C, total N and available N increased with the increase of abandonment years, that of south slope fluctuated significantly. Microbial biomass C and microbial biomass N in both slopes did not differ significantly in the first 10 years abandoned cropland, then decreased drastically in 15-year sites and thereafter tended to increase. Basal respiration in both slope fluctuated greatly in the sites with different abandonment years. Enzymes activities differed significantly in two slopes.


2016 ◽  
Vol 36 (21) ◽  
Author(s):  
朱云云 ZHU Yunyun ◽  
王孝安 WANG Xiao'an ◽  
王贤 WANG Xian ◽  
邓美皎 DENG Meijiao

CATENA ◽  
2011 ◽  
Vol 87 (1) ◽  
pp. 90-100 ◽  
Author(s):  
Li Wang ◽  
Sanping Wei ◽  
Robert Horton ◽  
Ming'an Shao

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhiqi Wang ◽  
Xiaobo Feng ◽  
Zhihong Yao ◽  
Zhaolong Ma ◽  
Guodong Ji

Soil moisture is a crucial factor limiting the growth and survival of plants on the Loess Plateau. Its level has a severe impact on plants’ growth and development and the type and distribution characteristics of communities. This study area is the Jihe Basin in the Loess Plateau, China. Multiple linear regression models with different environmental variables (land use, topographic and meteorological factors, etc.) were developed to simulate soil moisture’s spatial and temporal changes by integrating field experiments, indoor analysis, and GIS spatial analysis. The model performances were evaluated in the Jihe Basin, with soil moisture content measurements. The result shows that soil moisture content is positively correlated with soil bulk density, monthly rainfall, topographic wetness index, land use coefficient, and slope aspect coefficient but negatively correlated with the monthly-averaged temperature and the relative elevation coefficient. The selected variables are all related to the soil moisture content and can account for 75% of the variations of soil moisture content, and the remaining 25% of the variations are related to other factors. Comparing the simulated and measured values at all sampling points shows that the average error of all the simulated values is 0.09, indicating that the simulation has high accuracy. The spatial distribution of soil moisture content is significantly affected by land use and topographic factors, and seasonal variation is remarkable in the year. Seasonal variation of soil moisture content is determined by the seasonal variation of rainfall and the air temperature (determining evaporation) and vegetation growth cycle. Therefore, the proposed model can simulate the spatial and temporal variation of soil moisture content and support developing the soil and water loss model on a basin scale.


2021 ◽  
Vol 13 (3) ◽  
pp. 421
Author(s):  
Chengcheng Jiang ◽  
Wen Fan ◽  
Ningyu Yu ◽  
Yalin Nan

Gully head erosion causes serious land degradation in semiarid regions. The existing studies on gully head erosion are mainly based on measuring the gully volume in small-scale catchments, which is a labor-intensive and time-consuming approach. Therefore, it is necessary to explore an accurate method quantitatively over large areas and long periods. The objective of this study was to develop a model to assess gully head erosion in the Loess Plateau of China using a method based on the SBAS-InSAR technique. The gully heads were extracted from the digital elevation model and validated by field investigation and aerial images. The surface deformation was estimated with SBAS-InSAR and 22 descending ALOS PALSAR datasets from 2007 to 2011. A gully head erosion model was developed; this model can incorporate terrain factors and soil types, as well as provides erosion rate predictions consistent with the SBAS-InSAR measurements (R2 = 0.889). The results show that gully head erosion significantly depends on the slope angle above the gully head, slope length, topographic wetness index, and catchment area. The relationship between these factors and the gully head erosion rate is a power function, and the average rate of gully head erosion is 7.5 m3/m2/year, indicating the high erosional vulnerability of the area. The accuracy of the model can be further improved by considering other factors, such as the stream power factor, curvature, and slope aspect. This study indicates that the erosion rate of gully heads is almost unaffected by soil type in the research area. An advantage of this model is that the gully head area and surface deformation can be easily extracted and measured from satellite images, which is effective for assessing gully head erosion at a large scale in combination with SBAS-InSAR results and terrain attributes.


CATENA ◽  
2021 ◽  
Vol 198 ◽  
pp. 105028
Author(s):  
Zhixue Chen ◽  
Guohui Wang ◽  
Yanhui Pan ◽  
Xianlong Yang ◽  
Yuying Shen

Sign in / Sign up

Export Citation Format

Share Document