scholarly journals The potential of synthetic aperture radar interferometry for assessing meltwater lake dynamics on Antarctic ice shelves

2021 ◽  
Vol 15 (12) ◽  
pp. 5309-5322
Author(s):  
Weiran Li ◽  
Stef Lhermitte ◽  
Paco López-Dekker

Abstract. Surface meltwater drains on several Antarctic ice shelves, resulting in surface and sub-surface lakes that are potentially critical for the ice shelf collapse. Despite these phenomena, our understanding and assessment of the drainage and refreezing of these lakes is limited, mainly due to lack of field observations and to the limitations of optical satellite imagery during polar night and in cloudy conditions. This paper explores the potential of backscatter intensity and of interferometric coherence and phase from synthetic aperture radar (SAR) imagery as an alternative to assess the dynamics of meltwater lakes. In four case study regions over Amery and Roi Baudouin ice shelves, East Antarctica, we examine spatial and temporal variations in SAR backscatter intensity and interferometric (InSAR) coherence and phase over several lakes derived from Sentinel-1A/B C-band SAR imagery. Throughout the year, the lakes are observed in a completely frozen state, in a partially frozen state with a floating ice lid and as open-water lakes. Our analysis reveals that the meltwater lake delineation is challenging during the melting period when the contrast between melting snow and lakes is indistinguishable. Despite this finding, we show using a combination of backscatter and InSAR observations that lake dynamics can be effectively captured during other non-summertime months. Moreover, our findings highlight the utility of InSAR-based observations for discriminating between refrozen ice and sub-surface meltwater and indicate the potential for phase-based detection and monitoring of rapid meltwater drainage events. The potential of this technique to monitor these meltwater change events is, however, strongly determined by the satellite revisit interval and potential changes in scattering properties due to snowfall or melt events.

2021 ◽  
Author(s):  
Weiran Li ◽  
Stef Lhermitte ◽  
Paco López-Dekker

Abstract. Surface meltwater drains on several Antarctic ice shelves, resulting in surface and sub-surface lakes that are potentially critical for the ice shelf collapse. Yet, our understanding and assessment of the drainage or refreezing of these lakes is limited, mainly due to lack of field observations and to the limitations of optical satellite imagery. Therefore, this paper explores the potential of backscatter intensity and of interferometric coherence and phase from C-band synthetic aperture radar (SAR) imagery as an alternative to assess the dynamics of meltwater lakes. In two case studies over Amery and Roi Baudouin ice shelves, we analyse i) the spatial and ii) the temporal variations of SAR backscatter intensity with iii) coherence and iv) interferogram phase (InSAR) patterns detected by Sentinel-1 data over multiple meltwater lakes. Throughout the year the lakes are observed in completely frozen state, in partially frozen state with a floating ice lid, and as open water lakes. The analysis reveals that the meltwater lake delineation is challenging during the melting period when the contrast between melting snow and lakes is confounded. On the other hand, it shows that the lake dynamics can be effectively captured during the refreezing process and the winter season by combining backscatter and InSAR information. In particular, the InSAR coherence and interferogram phase information are deemed essential throughout this whole period to distinguish between refrozen ice and subsurface meltwater. Additionally, the results provide significant evidence on the potential of the interferogram fringe patterns to detect and characterise instant events, such as lake drainage events over ice shelves. The potential of this technique to monitor these meltwater change events is however strongly determined by the satellite revisit interval and potential changes in scattering properties due to snowfall or melt events.


1992 ◽  
Vol 38 (128) ◽  
pp. 23-35 ◽  
Author(s):  
Matti Leppäranta ◽  
Rlsto Kuittinen ◽  
Jan Askne

Abstract Remote-sensing methods are the primary ones used for ice mapping in the Baltic Sea. A major methodological improvement is now being introduced by satellite radars due to their weather independency and high resolution. To learn how to use ERS-1 synthetic aperture radar (SAR) data, an extensive field programme BEPERS (Bothnian Experiment in Preparation for ERS-1) with airborne SARs has been arranged. The BEPERS pilot study was undertaken in 1987 using the French VARAN-S X-band SAR. The SAR was flown on 1 day over four study areas of size approximately 10 km x 50 km, and intensive validation observations were made. The data were most useful for the education they provided on how to work with SAR in sea-ice mapping. They have been used for developing SAR image-analysis methods, back-scatter modelling investigations and geophysical validation of SAR imagery. Cleaning-up of images consisted of speckle reduction and segmentation. Back-scatter characteristics of undeformed ice and ridges were examined. Ice-type classification was based on the box-classification method. Eight ice types were defined but basically only two types, undeformed ice/open water and deformed ice, could be discriminated. Two basic problems of high practical importance remained: how to discriminate between (1) open water and undeformed ice, and (2) ridged ice and brash ice. The data further showed illustrative examples of SAR imagery over sea ice.


1992 ◽  
Vol 38 (128) ◽  
pp. 23-35
Author(s):  
Matti Leppäranta ◽  
Rlsto Kuittinen ◽  
Jan Askne

AbstractRemote-sensing methods are the primary ones used for ice mapping in the Baltic Sea. A major methodological improvement is now being introduced by satellite radars due to their weather independency and high resolution. To learn how to use ERS-1 synthetic aperture radar (SAR) data, an extensive field programme BEPERS (Bothnian Experiment in Preparation for ERS-1) with airborne SARs has been arranged. The BEPERS pilot study was undertaken in 1987 using the French VARAN-S X-band SAR. The SAR was flown on 1 day over four study areas of size approximately 10 km x 50 km, and intensive validation observations were made. The data were most useful for the education they provided on how to work with SAR in sea-ice mapping. They have been used for developing SAR image-analysis methods, back-scatter modelling investigations and geophysical validation of SAR imagery. Cleaning-up of images consisted of speckle reduction and segmentation. Back-scatter characteristics of undeformed ice and ridges were examined. Ice-type classification was based on the box-classification method. Eight ice types were defined but basically only two types, undeformed ice/open water and deformed ice, could be discriminated. Two basic problems of high practical importance remained: how to discriminate between (1) open water and undeformed ice, and (2) ridged ice and brash ice. The data further showed illustrative examples of SAR imagery over sea ice.


Author(s):  
Israel Yañez-Vargas ◽  
Joel Quintanilla-Domínguez ◽  
Gabriel Aguilera-Gonzalez

This paper presents a novel multi-layer perceptron (MLP) based image fusion technique, which fuses two synthetic aperture radar (SAR) images, obtained from the same spatial reflectivity map, acquired with a conventional low-cost fractional synthetic aperture radar (Fr-SAR) system, enhanced via two different methodologies. The first image is enhanced using the traditional descriptive experiment design regularization (DEDR) framework through the projection onto convex solution sets (POCS) method; the second image is enhanced with the DEDR framework by incorporating the robust adaptive spatial filtering (RASF) solution operator. This work describes a MLP based technique applied to the pixel level multi-focus fusion problem characterized by the use of image windows with the idea of reducing noise and determining which pixel is clearer between the two images. Experimental results show that the proposed novel method outperforms the discrete wavelet transform based most competing approach.


2013 ◽  
pp. 880-889
Author(s):  
Charles Paradzayi ◽  
Harold J. Annegarn

Recent developments in Synthetic Aperture Radar (SAR) technologies have shown their potential for assessing and quantifying above-ground biomass (AGB) at landscape levels in different biomes. This paper examines the application of full polarimetric data to retrieve information related to potential woody biomass in sparse communal savanna woodlands in southern Africa using the Advanced Land Observation Satellite’s Phased Array L-band Synthetic Aperture Radar (ALOS PALSAR). Woody vegetation classes were obtained from the unsupervised entropy/alpha Wishart classification of the full polarimetric ALOS/PALSAR data. A combination of Differential GPS and conventional surveying techniques was used for a field inventory survey to estimate plot-level biomass densities in Welverdiend communal woodlands of South Africa. Regression analysis was used to derive the logarithmic relationship between the sampled plot AGB densities and the mean backscatter intensity of the microwave signal, which is transmitted in the horizontal plane and received in the vertical plane (HV). The AGB density for each woody vegetation class is estimated by solving the logarithmic equation after extracting the mean HV backscatter intensity for the particular vegetation class. The potential woody biomass is estimated from the derived AGB densities and the areal extent of the respective woody vegetation classes.


Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1215 ◽  
Author(s):  
Xin Wang ◽  
Ling Qiao

A sparse-based refocusing methodology for multiple slow-moving targets (MTs) located inside strong clutter regions is proposed in this paper. The defocused regions of MTs in synthetic aperture radar (SAR) imagery were utilized here instead of the whole original radar data. A joint radar projection operator for the static and moving objects was formulated and employed to construct an optimization problem. The Lp norm constraint was utilized to promote the separation of MT data and the suppression of clutter. After the joint sparse imaging processing, the energy of strong static targets could be suppressed significantly in the reconstructed MT imagery. The static scene imagery could be derived simultaneously without the defocused MT. Finally, numerical simulations were used verify the validity and robustness of the proposed methodology.


1977 ◽  
Vol 21 (3) ◽  
pp. 235-240
Author(s):  
Edward J. Dragavon

Three general classes of image enhancement techniques for synthetic aperture radar (SAR) video were investigated through non-real-time computer simulation. The general categories were 1) monochromatic adaptive gray shade transformations, 2) pseudocolor encoding, and 3) feature analytic methods. The class of feature analytic techniques was found to have the greatest potential for improving the operational utility of SAR imagery.


Sign in / Sign up

Export Citation Format

Share Document