backscatter intensity
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 21)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 12 (6) ◽  
pp. 745-750
Author(s):  
D. Anil Kumar ◽  
◽  
P. Srikanth ◽  
T. L. Neelima ◽  
M. Uma Devi ◽  
...  

A study was carried out using the temporal Sentinel-1B microwave data (June to November at 12 days interval) and Sentinel-2A/2B optical data (June to November) to discriminate the maize crop from other competing crops rice and cotton in Siddipet district, Telangana state, India during kharif, 2019 (June to November). The study utilized the data from multiple sources such as Multi-temporal VH backscatter intensity from Sentinel-1B SAR and NDVI values from Sentinel-2A/2B in combination with field data to discriminate the maize crop. Synchronous to satellite pass, ground truth data on crop parameters viz., crop stage, crop vigour, biomass, plant height, plant density, soil moisture, LAI and chlorophyll content were collected. Multi-temporal VH backscatter intensity and Normalized Difference Vegetation Index (NDVI) data were used to characterize backscatter and greenness behaviour of the maize crop. The backscatter intensity (dB) for maize crop ranged from -21.83 (the lowest backscatter values) at planting to -12.52 (the highest backscatter values) at peak growth stage. The NDVI values during vegetative and reproductive stages (August and September) were >0.6 and during senescence to harvesting the values were less than or equal to 0.52. The increase in backscatter intensity values from initial vegetative stage to peak stage was due to increased volume scattering of the maize crop canopy and a continuous decline in backscatter intensity values of VH band at maturity stage, was due to decrease in greenness and moisture content in leaves of the maize crop helped in maize crop discrimination from other dominant kharif crops in the study area.


2021 ◽  
Vol 15 (12) ◽  
pp. 5309-5322
Author(s):  
Weiran Li ◽  
Stef Lhermitte ◽  
Paco López-Dekker

Abstract. Surface meltwater drains on several Antarctic ice shelves, resulting in surface and sub-surface lakes that are potentially critical for the ice shelf collapse. Despite these phenomena, our understanding and assessment of the drainage and refreezing of these lakes is limited, mainly due to lack of field observations and to the limitations of optical satellite imagery during polar night and in cloudy conditions. This paper explores the potential of backscatter intensity and of interferometric coherence and phase from synthetic aperture radar (SAR) imagery as an alternative to assess the dynamics of meltwater lakes. In four case study regions over Amery and Roi Baudouin ice shelves, East Antarctica, we examine spatial and temporal variations in SAR backscatter intensity and interferometric (InSAR) coherence and phase over several lakes derived from Sentinel-1A/B C-band SAR imagery. Throughout the year, the lakes are observed in a completely frozen state, in a partially frozen state with a floating ice lid and as open-water lakes. Our analysis reveals that the meltwater lake delineation is challenging during the melting period when the contrast between melting snow and lakes is indistinguishable. Despite this finding, we show using a combination of backscatter and InSAR observations that lake dynamics can be effectively captured during other non-summertime months. Moreover, our findings highlight the utility of InSAR-based observations for discriminating between refrozen ice and sub-surface meltwater and indicate the potential for phase-based detection and monitoring of rapid meltwater drainage events. The potential of this technique to monitor these meltwater change events is, however, strongly determined by the satellite revisit interval and potential changes in scattering properties due to snowfall or melt events.


2021 ◽  
Author(s):  
◽  
Thomas Vasilios Golding

<p>Omakere Ridge is an anticlinal thrust ridge in water depths of 1100–1700mon the Hikurangi Margin, east of the North Island of New Zealand, and is an area of active seafloor methane seepage associated with an extensive gas hydrate province. Methane seep sites on the Hikurangi Margin are characterised by localised buildups of authigenic carbonate and chemosynthetic seep fauna that exist on a seafloor otherwise characterised by soft, muddy sediments and provide a unique window into the workings of the gas hydrate system. Seafloor methane seeps sites on Omakere Ridge have been successfully imaged using three newly-acquired acoustic datasets: a P-CableTM high-resolution 3D seismic reflection dataset (60 Hz); a multibeam sonar backscatter dataset (12 kHz); and a ParasoundTM subbottom profiler dataset (4 kHz). Seafloor seismic amplitude and similarity maps have been derived from a preliminary shipboard post-stack migrated data cube. A pronounced acquisition artifact is manifest in the seafloor horizon slice as high- and low-amplitude stripes that alternate periodically in the crossline direction. This artifact has been removed from the seafloor horizon slice using 2D spatial frequency filtering, followed by direct sampling and stochastic removal of the very-low-frequency components in the spatial domain. The seismic amplitude map has then been transformed into a calibrated seafloor reflection coefficient map. Sonar backscatter mosaics have been created after correcting for beam pattern effects and angular variation in backscatter after taking into account the bathymetry. Several backscatter mosaics were incorporated into a stacked mosaic over the study area to attenuate random noise. The ParasoundTM sub-bottom profiler data were processed to display instantaneous amplitude and separated into 43 lines over the study area. Comparison of 3D seismic attributes, multibeam backscatter intensity and shallow subsurface reflection characteristics provides new insights into the previously unknown extent of authigenic carbonate build-ups, methane migration pathways and seep initiation mechanisms at five seep sites on Omakere Ridge. Areas of high seafloor 3D seismic reflection coefficient and high multibeam backscatter intensity are interpreted as carbonate formations of at least 6–7 m thickness, while areas exhibiting low seismic reflection coefficient and moderate/high sonar backscatter intensity are interpreted as areas where the carbonates are less developed. Anomalous high-amplitude subsurface reflections beneath the seeps in the ParasoundTM data are interpreted as buried carbonates and may indicate a previously unknown earlier phase of seepage at Omakere Ridge, but could also be caused by gas or gas hydrates. The extent of authigenic carbonates is directly related to the duration of seepage and thus provides a new proxy for the chronology of seepage at Omakere Ridge, which has proved consistent with an existing hypothesis based on the abundance of deceased and live chemosynthetic fauna at the seep sites.</p>


2021 ◽  
Author(s):  
◽  
Thomas Vasilios Golding

<p>Omakere Ridge is an anticlinal thrust ridge in water depths of 1100–1700mon the Hikurangi Margin, east of the North Island of New Zealand, and is an area of active seafloor methane seepage associated with an extensive gas hydrate province. Methane seep sites on the Hikurangi Margin are characterised by localised buildups of authigenic carbonate and chemosynthetic seep fauna that exist on a seafloor otherwise characterised by soft, muddy sediments and provide a unique window into the workings of the gas hydrate system. Seafloor methane seeps sites on Omakere Ridge have been successfully imaged using three newly-acquired acoustic datasets: a P-CableTM high-resolution 3D seismic reflection dataset (60 Hz); a multibeam sonar backscatter dataset (12 kHz); and a ParasoundTM subbottom profiler dataset (4 kHz). Seafloor seismic amplitude and similarity maps have been derived from a preliminary shipboard post-stack migrated data cube. A pronounced acquisition artifact is manifest in the seafloor horizon slice as high- and low-amplitude stripes that alternate periodically in the crossline direction. This artifact has been removed from the seafloor horizon slice using 2D spatial frequency filtering, followed by direct sampling and stochastic removal of the very-low-frequency components in the spatial domain. The seismic amplitude map has then been transformed into a calibrated seafloor reflection coefficient map. Sonar backscatter mosaics have been created after correcting for beam pattern effects and angular variation in backscatter after taking into account the bathymetry. Several backscatter mosaics were incorporated into a stacked mosaic over the study area to attenuate random noise. The ParasoundTM sub-bottom profiler data were processed to display instantaneous amplitude and separated into 43 lines over the study area. Comparison of 3D seismic attributes, multibeam backscatter intensity and shallow subsurface reflection characteristics provides new insights into the previously unknown extent of authigenic carbonate build-ups, methane migration pathways and seep initiation mechanisms at five seep sites on Omakere Ridge. Areas of high seafloor 3D seismic reflection coefficient and high multibeam backscatter intensity are interpreted as carbonate formations of at least 6–7 m thickness, while areas exhibiting low seismic reflection coefficient and moderate/high sonar backscatter intensity are interpreted as areas where the carbonates are less developed. Anomalous high-amplitude subsurface reflections beneath the seeps in the ParasoundTM data are interpreted as buried carbonates and may indicate a previously unknown earlier phase of seepage at Omakere Ridge, but could also be caused by gas or gas hydrates. The extent of authigenic carbonates is directly related to the duration of seepage and thus provides a new proxy for the chronology of seepage at Omakere Ridge, which has proved consistent with an existing hypothesis based on the abundance of deceased and live chemosynthetic fauna at the seep sites.</p>


2021 ◽  
Author(s):  
Weiran Li ◽  
Stef Lhermitte ◽  
Paco López-Dekker

Abstract. Surface meltwater drains on several Antarctic ice shelves, resulting in surface and sub-surface lakes that are potentially critical for the ice shelf collapse. Yet, our understanding and assessment of the drainage or refreezing of these lakes is limited, mainly due to lack of field observations and to the limitations of optical satellite imagery. Therefore, this paper explores the potential of backscatter intensity and of interferometric coherence and phase from C-band synthetic aperture radar (SAR) imagery as an alternative to assess the dynamics of meltwater lakes. In two case studies over Amery and Roi Baudouin ice shelves, we analyse i) the spatial and ii) the temporal variations of SAR backscatter intensity with iii) coherence and iv) interferogram phase (InSAR) patterns detected by Sentinel-1 data over multiple meltwater lakes. Throughout the year the lakes are observed in completely frozen state, in partially frozen state with a floating ice lid, and as open water lakes. The analysis reveals that the meltwater lake delineation is challenging during the melting period when the contrast between melting snow and lakes is confounded. On the other hand, it shows that the lake dynamics can be effectively captured during the refreezing process and the winter season by combining backscatter and InSAR information. In particular, the InSAR coherence and interferogram phase information are deemed essential throughout this whole period to distinguish between refrozen ice and subsurface meltwater. Additionally, the results provide significant evidence on the potential of the interferogram fringe patterns to detect and characterise instant events, such as lake drainage events over ice shelves. The potential of this technique to monitor these meltwater change events is however strongly determined by the satellite revisit interval and potential changes in scattering properties due to snowfall or melt events.


2021 ◽  
Author(s):  
Raffi Karshafian ◽  
Hyunjung Christina Kim ◽  
Azza Al-Mahrouki ◽  
Alborz Gorjizadeh ◽  
Ali Sadeghi-Naini ◽  
...  

The aim of this study was to assess the efficacy of quantitative ultrasound imaging in characterizing cancer cell death caused by enhanced radiation treatments. This investigation focused on developing this ultrasound modality as an imaging-based non-invasive method that can be used to monitor therapeutic ultrasound and radiation effects. High-frequency (25 MHz) ultrasound was used to image tumor responses caused by ultrasound-stimulated microbubbles in combination with radiation. Human prostate xenografts grown in severe combined immunodeficiency (SCID) mice were treated using 8, 80, or 1000 µL/kg of microbubbles stimulated with ultrasound at 250, 570, or 750 kPa, and exposed to 0, 2, or 8 Gy of radiation. Tumors were imaged prior to treatment and 24 hours after treatment. Spectral analysis of images acquired from treated tumors revealed overall increases in ultrasound backscatter intensity and the spectral intercept parameter. The increase in backscatter intensity compared to the control ranged from 1.9±1.6 dB for the clinical imaging dose of microbubbles (8 µL/kg, 250 kPa, 2 Gy) to 7.0±4.1 dB for the most extreme treatment condition (1000 µL/kg, 750 kPa, 8 Gy). In parallel, in situ end-labelling (ISEL) staining, ceramide, and cyclophilin A staining demonstrated increases in cell death due to DNA fragmentation, ceramide-mediated apoptosis, and release of cyclophilin A as a result of cell membrane permeabilization, respectively. Quantitative ultrasound results indicated changes that paralleled increases in cell death observed from histology analyses supporting its use for non-invasive monitoring of cancer treatment outcomes.


2021 ◽  
Author(s):  
Raffi Karshafian ◽  
Hyunjung Christina Kim ◽  
Azza Al-Mahrouki ◽  
Alborz Gorjizadeh ◽  
Ali Sadeghi-Naini ◽  
...  

The aim of this study was to assess the efficacy of quantitative ultrasound imaging in characterizing cancer cell death caused by enhanced radiation treatments. This investigation focused on developing this ultrasound modality as an imaging-based non-invasive method that can be used to monitor therapeutic ultrasound and radiation effects. High-frequency (25 MHz) ultrasound was used to image tumor responses caused by ultrasound-stimulated microbubbles in combination with radiation. Human prostate xenografts grown in severe combined immunodeficiency (SCID) mice were treated using 8, 80, or 1000 µL/kg of microbubbles stimulated with ultrasound at 250, 570, or 750 kPa, and exposed to 0, 2, or 8 Gy of radiation. Tumors were imaged prior to treatment and 24 hours after treatment. Spectral analysis of images acquired from treated tumors revealed overall increases in ultrasound backscatter intensity and the spectral intercept parameter. The increase in backscatter intensity compared to the control ranged from 1.9±1.6 dB for the clinical imaging dose of microbubbles (8 µL/kg, 250 kPa, 2 Gy) to 7.0±4.1 dB for the most extreme treatment condition (1000 µL/kg, 750 kPa, 8 Gy). In parallel, in situ end-labelling (ISEL) staining, ceramide, and cyclophilin A staining demonstrated increases in cell death due to DNA fragmentation, ceramide-mediated apoptosis, and release of cyclophilin A as a result of cell membrane permeabilization, respectively. Quantitative ultrasound results indicated changes that paralleled increases in cell death observed from histology analyses supporting its use for non-invasive monitoring of cancer treatment outcomes.


2021 ◽  
Author(s):  
Wenkai Guo ◽  
Polona Itkin ◽  
Johannes Lohse ◽  
Malin Johansson ◽  
Anthony Paul Doulgeris

Abstract. Wide-swath C-band synthetic aperture radar (SAR) has been used for sea ice classification and estimates of sea ice drift and deformation since it first became widely available in the 1990s. Here, we examine the potential to distinguish surface features created by sea ice deformation using ice type classification of SAR data. To perform this task with extended spatial and temporal coverage, we investigate the cross-platform transferability between training sets derived from Sentinel-1 Extra Wide (S1 EW) and RADARSAT-2 (RS2) ScanSAR Wide A (SCWA) and Fine Quad-polarimetric (FQ) data, as the same radiometrically calibrated backscatter coefficients are expected from these two C-band SAR platforms. For this, we use a novel sea ice classification method developed based on Arctic-wide S1 EW training, which considers the ice-type-dependent change of SAR backscatter intensity with incident angle (IA). This study focuses on the region near Fram Strait north of Svalbard to utilize expert knowledge of ice conditions from co-authors who participated in the Norwegian young sea ICE (N-ICE2015) expedition in the region. Separate training sets for S1 EW, RS2 SCWA and RS2 FQ data are derived using manually drawn polygons of different ice types, and are used to re-train the classifier. Results show that although the best classification accuracy is achieved for each dataset using its own training, different training sets yield similar results and IA slopes, with the exception of leads with calm open water, nilas or newly formed ice (the “leads”' class). This is found to be caused by different noise floor configurations of S1 and RS2 data, which lead to different IA slopes of this class. This indicates that dataset-specific re-training is needed for leads in the cross-platform application of the classifier. Based on the classifier thus re-trained for each dataset, the classification scheme is altered to target the separation of level and deformed ice, which enables direct comparison with independently derived sea ice deformation maps. The comparisons show that the classification of C-band SAR can be used to distinguish areas of ice divergence occupied by leads, young ice and level first-year ice (LFYI). However, it has limited capacity in delineating areas of ice deformation due to ambiguities in ice types represented by classes with higher backscatter intensities. This study provides reference to future studies seeking cross-platform application of training sets so they are fully utilized, and we expect further development of the classifier and the inclusion of other SAR datasets to enable image classification-based ice deformation detection using only satellite SAR data.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2960
Author(s):  
Wenxin Tian ◽  
Lingli Tang ◽  
Yuwei Chen ◽  
Ziyang Li ◽  
Jiajia Zhu ◽  
...  

Hyperspectral LiDAR (HSL) is a new remote sensing detection method with high spatial and spectral information detection ability. In the process of laser scanning, the laser echo intensity is affected by many factors. Therefore, it is necessary to calibrate the backscatter intensity data of HSL. Laser incidence angle is one of the important factors that affect the backscatter intensity of the target. This paper studied the radiometric calibration method of incidence angle effect for HSL. The reflectance of natural surfaces can be simulated as a combination of specular reflection and diffuse reflection. The linear combination of the Lambertian model and Beckmann model provides a comprehensive theory that can be applied to various surface conditions, from glossy to rough surfaces. Therefore, an adaptive threshold radiometric calibration method (Lambertian–Beckmann model) is proposed to solve the problem caused by the incident angle effect. The relationship between backscatter intensity and incident angle of HSL is studied by combining theory with experiments, and the model successfully quantifies the difference between diffuse and specular reflectance coefficients. Compared with the Lambertian model, the proposed model has higher calibration accuracy, and the average improvement rate to the samples in this study was 22.67%. Compared with the results before calibration with the incidence angle of less than 70°, the average improvement rate of the Lambertian–Beckmann model was 62.26%. Moreover, we also found that the green leaves have an obvious specular reflection effect near 650–720 nm, which might be related to the inner microstructure of chlorophyll. The Lambertian–Beckmann model was more helpful to the calibration of leaves in the visible wavelength range. This is a meaningful and a breakthrough exploration for HSL.


2021 ◽  
Vol 174 ◽  
pp. 107728
Author(s):  
Xiaodong Cui ◽  
Hongxia Liu ◽  
Miao Fan ◽  
Bo Ai ◽  
Dan Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document