scholarly journals Thermal impacts of engineering activities on permafrost in different alpine ecosystems in Qinghai-Tibet Plateau, China

2016 ◽  
Author(s):  
Qingbai Wu ◽  
Zhongqiong Zhang ◽  
Siru Gao ◽  
Wei Ma

Abstract. Climate warming and engineering activities have various impacts on the thermal regime of permafrost in alpine ecosystems of the Qinghai–Tibet Plateau. Using recent observations of permafrost thermal regimes along the Qinghai–Tibet Highway and Railway, the change of such regimes beneath embankments constructed in alpine meadows and steppes are studied. The results show that alpine meadows on the Qinghai–Tibet Plateau can have a controlling role within engineering construction effects on permafrost beneath embankments. The artificial permafrost table (APT) beneath embankments is predominantly controlled by alpine ecosystems, but the change rate of APT is not closely related with those ecosystems; it is mainly related with cooling effects of railway ballast and heat absorption effects of asphalt pavement. Variation of soil temperature beneath embankments is independent of alpine ecosystems, but variation of mean annual soil temperature with depth is closely related to those ecosystems. The vegetation layer in alpine meadows can have an insulation role within engineering activity effects on permafrost beneath embankments. This insulation role is an advantage for alleviating permafrost temperature rise in the short term, but a disadvantage in the long term because of climate warming, suggesting that vegetation layer in alpine meadow should be removed upon initiating engineering construction.

2016 ◽  
Vol 10 (4) ◽  
pp. 1695-1706 ◽  
Author(s):  
Qingbai Wu ◽  
Zhongqiong Zhang ◽  
Siru Gao ◽  
Wei Ma

Abstract. Climate warming and engineering activities have various impacts on the thermal regime of permafrost in alpine ecosystems of the Qinghai–Tibet Plateau. Using recent observations of permafrost thermal regimes along the Qinghai–Tibet highway and railway, the changes of such regimes beneath embankments constructed in alpine meadows and steppes are studied. The results show that alpine meadows on the Qinghai–Tibet Plateau can have a controlling role among engineering construction effects on permafrost beneath embankments. As before railway construction, the artificial permafrost table (APT) beneath embankments is not only affected by climate change and engineering activities but is also controlled by alpine ecosystems. However, the change rate of APT is not dependent on ecosystem type, which is predominantly affected by climate change and engineering activities. Instead, the rate is mainly related to cooling effects of railway ballast and heat absorption effects of asphalt pavement. No large difference between alpine and steppe can be identified regarding the variation of soil temperature beneath embankments, but this difference is readily identified in the variation of mean annual soil temperature with depth. The vegetation layer in alpine meadows has an insulation role among engineering activity effects on permafrost beneath embankments, but this insulation gradually disappears because the layer decays and compresses over time. On the whole, this layer is advantageous for alleviating permafrost temperature rise in the short term, but its effect gradually weakens in the long term.


2017 ◽  
Vol 49 (1) ◽  
pp. 194-209 ◽  
Author(s):  
Si-Yi Zhang ◽  
Xiao-Yan Li

Abstract Soil temperature and moisture are the key variables that control the overall effect of climate and topography on soil and vegetation in alpine regions. However, there has been little investigation of the potential soil temperature and moisture feedbacks on climate changes in different alpine ecosystems and their impact on vegetation change. Soil temperature and moisture at five depths were measured continuously at 10-min intervals in three typical ecosystems (Kobresia meadow (KMd), Achnatherum splendens steppe (ASSt), and Potentilla fruticosa shrub (PFSh)) of the Qinghai Lake watershed on the northeast Qinghai-Tibet Plateau, China. The findings of this study revealed that the KMd and PFSh sites had relatively low soil temperature and high soil moisture, whereas the ASSt site had relatively warm soil temperature and low soil moisture. The soil and vegetation characteristics had important effects on the infiltration process and soil moisture regime; about 47%, 87%, and 34% of the rainfall (minus interception) permeated to the soil in the KMd, PFSh, and ASSt sites, respectively. In the context of the warming climate, changes to soil moisture and temperature are likely to be the key reasons of the alpine meadow deterioration and the alpine shrub expansion in the alpine regions.


2015 ◽  
Vol 12 (23) ◽  
pp. 6853-6868 ◽  
Author(s):  
T. Li ◽  
W. Zhang ◽  
Q. Zhang ◽  
Y. Lu ◽  
G. Wang ◽  
...  

Abstract. Natural wetlands are among the most important sources of atmospheric methane and thus important for better understanding the long-term temporal variations in the atmospheric methane concentration. During the last 60 years, wetlands have experienced extensive conversion and impacts from climate warming which might result in complicated temporal and spatial variations in the changes of the wetland methane emissions. In this paper, we present a modeling framework, integrating CH4MODwetland, TOPMODEL, and TEM models, to analyze the temporal and spatial variations in CH4 emissions from natural wetlands (including inland marshes/swamps, coastal wetlands, lakes, and rivers) in China. Our analysis revealed a total increase of 25.5 %, averaging 0.52 g m−2 per decade, in the national CH4 fluxes from 1950 to 2010, which was mainly induced by climate warming. Larger CH4 flux increases occurred in northeastern, northern, and northwestern China, where there have been higher temperature rises. However, decreases in precipitation due to climate warming offset the increment of CH4 fluxes in these regions. The CH4 fluxes from the wetland on the Qinghai–Tibet Plateau exhibited the lowest CH4 increase (0.17 g m−2 per decade). Although climate warming has accelerated CH4 fluxes, the total amount of national CH4 emissions decreased by approximately 2.35 Tg (1.91–2.81 Tg), i.e., from 4.50 Tg in the early 1950s to 2.15 Tg in the late 2000s, due to the wetland loss totalling 17.0 million ha. Of this reduction, 0.26 Tg (0.24–0.28 Tg) was derived from lakes and rivers, 0.16 Tg (0.13–0.20 Tg) from coastal wetlands, and 1.92 Tg (1.54–2.33 Tg) from inland wetlands. Spatially, northeastern China contributed the most to the total reduction, with a loss of 1.68 Tg. The wetland CH4 emissions reduced by more than half in most regions in China except for the Qinghai–Tibet Plateau, where the CH4 decrease was only 23.3 %.


Sign in / Sign up

Export Citation Format

Share Document