Linking thaw depth with soil moisture and plant community composition: effects of permafrost degradation on alpine ecosystems on the Qinghai-Tibet Plateau

2012 ◽  
Vol 367 (1-2) ◽  
pp. 687-700 ◽  
Author(s):  
Zhao-ping Yang ◽  
Ji-xi Gao ◽  
Lin Zhao ◽  
Xing-liang Xu ◽  
Hua Ouyang
2021 ◽  
Author(s):  
Ruud Scharn ◽  
Cole G. Brachmann ◽  
Aurora Patchett ◽  
Heather Reese ◽  
Anne Bjorkman ◽  
...  

Climate change is rapidly warming high latitude and high elevation regions influencing plant community composition. Changes in vegetation composition have motivated the coordination of ecological monitoring networks across the Arctic, including the International Tundra Experiment (ITEX). We have established a long-term passive warming experiment using open-top chambers, which includes five distinct plant communities (Dry Heath; Tussock Tundra; and Dry, Mesic, and Wet Meadow). We have measured changes in plant community composition based on relative abundance differences over 26 years. In addition, relative abundance changes in response to fertilization and warming treatments were analysed based on a 7-year Community-Level Interaction Program (CLIP) experiment. The communities had distinct soil moisture conditions, leading to community specific responses of the plant growth forms (deciduous shrubs, evergreen shrubs, forbs and graminoids). Warming significantly affected growth forms, but the direction of the response was not consistent across the communities. Evidence of shrub expansion was found in nearly all communities, with soil moisture determining whether it was driven by deciduous or evergreen shrubs. Graminoids increased in relative abundance in the Dry Meadow due to warming. Growth form responses to warming are likely mediated by edaphic characteristics of the communities and their interactions with climate.


2017 ◽  
Vol 49 (1) ◽  
pp. 194-209 ◽  
Author(s):  
Si-Yi Zhang ◽  
Xiao-Yan Li

Abstract Soil temperature and moisture are the key variables that control the overall effect of climate and topography on soil and vegetation in alpine regions. However, there has been little investigation of the potential soil temperature and moisture feedbacks on climate changes in different alpine ecosystems and their impact on vegetation change. Soil temperature and moisture at five depths were measured continuously at 10-min intervals in three typical ecosystems (Kobresia meadow (KMd), Achnatherum splendens steppe (ASSt), and Potentilla fruticosa shrub (PFSh)) of the Qinghai Lake watershed on the northeast Qinghai-Tibet Plateau, China. The findings of this study revealed that the KMd and PFSh sites had relatively low soil temperature and high soil moisture, whereas the ASSt site had relatively warm soil temperature and low soil moisture. The soil and vegetation characteristics had important effects on the infiltration process and soil moisture regime; about 47%, 87%, and 34% of the rainfall (minus interception) permeated to the soil in the KMd, PFSh, and ASSt sites, respectively. In the context of the warming climate, changes to soil moisture and temperature are likely to be the key reasons of the alpine meadow deterioration and the alpine shrub expansion in the alpine regions.


2021 ◽  
Author(s):  
Tanja Strecker ◽  
Annette Jesch ◽  
Dörte Bachmann ◽  
Melissa Jüds ◽  
Kevin Karbstein ◽  
...  

2009 ◽  
Vol 53 (1) ◽  
pp. 150-158 ◽  
Author(s):  
JiChun Wu ◽  
Yu Sheng ◽  
QingBai Wu ◽  
Zhi Wen

2017 ◽  
Vol 7 (23) ◽  
pp. 10233-10242 ◽  
Author(s):  
Jacob Nabe-Nielsen ◽  
Signe Normand ◽  
Francis K. C. Hui ◽  
Laerke Stewart ◽  
Christian Bay ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document