scholarly journals Observation of the 2018 North Greenland polynya with a new merged optical and passive microwave sea ice concentration dataset

Author(s):  
Valentin Ludwig ◽  
Gunnar Spreen ◽  
Christian Haas ◽  
Larysa Istomina ◽  
Frank Kauker ◽  
...  

Abstract. Observations of sea ice concentration are available from satellites year-round and almost weather-independently using passive microwave radiometers at resolutions down to 5 km. Thermal infrared radiometers provide data with a resolution of 1 km, but only under cloud-free conditions. We use the best of the two satellite measurements and merge thermal infrared and passive microwave sea ice concentrations. This yields a merged sea ice concentration product which combines the gap-free spatial coverage of the passive microwave sea ice concentrations and the 1 km resolution of the thermal infrared sea ice concentrations. The benefit of the merged product is demonstrated by observations of a polynya which opened north of Greenland in February 2018. We find that the merged sea ice concentration product resolves leads as sea ice concentration between 60 % and 80 %. They are not resolved by the coarser passive microwave sea ice concentration product. Next, the environmental conditions during the polynya event are analysed. The polynya was caused by unusual southerly winds during which the sea ice drifted northward instead of southward as usual. The daily displacement was 50 % stronger than normal. The polynya was associated with a warm-air intrusion caused by a high-pressure system over the Eurasian Arctic. Surface air temperatures were slightly beneath 0 °C and thus more than 20 °C above the average. Two estimates of thermodynamic growth yield accumulated growth of 60 and 65 cm at the end of March. This compares well with airborne sea ice thickness measurements. 33 km3 of sea ice were produced thermodynamically.

2019 ◽  
Vol 13 (7) ◽  
pp. 2051-2073 ◽  
Author(s):  
Valentin Ludwig ◽  
Gunnar Spreen ◽  
Christian Haas ◽  
Larysa Istomina ◽  
Frank Kauker ◽  
...  

Abstract. Observations of sea-ice concentration are available from satellites year-round and almost weather-independently using passive microwave radiometers at resolutions down to 5 km. Thermal infrared radiometers provide data with a resolution of 1 km but only under cloud-free conditions. We use the best of the two satellite measurements and merge thermal infrared and passive microwave sea-ice concentrations. This yields a merged sea-ice concentration product combining the gap-free spatial coverage of the passive microwave sea-ice concentration and the 1 km resolution of the thermal infrared sea-ice concentration. The benefit of the merged product is demonstrated by observations of a polynya which opened north of Greenland in February 2018. We find that the merged sea-ice concentration product resolves leads at sea-ice concentrations between 60 % and 90 %. They are not resolved by the coarser passive microwave sea-ice concentration product. The benefit of the merged product is most pronounced during the formation of the polynya. Next, the environmental conditions during the polynya event are analysed. The polynya was caused by unusual southerly winds during which the sea ice drifted northward instead of southward as usual. The daily displacement was 50 % stronger than normal. The polynya was associated with a warm-air intrusion caused by a high-pressure system over the Eurasian Arctic. Surface air temperatures were slightly below 0 ∘C and thus more than 20 ∘C higher than normal. Two estimates of thermodynamic sea-ice growth yield sea-ice thicknesses of 60 and 65 cm at the end of March in the area opened by the polynya. This differed from airborne sea-ice thickness measurements, indicating that sea-ice growth processes in the polynya are complicated by rafting and ridging. A sea-ice volume of 33 km3 was produced thermodynamically.


2020 ◽  
Vol 12 (19) ◽  
pp. 3183
Author(s):  
Valentin Ludwig ◽  
Gunnar Spreen ◽  
Leif Toudal Pedersen

Sea-ice concentration (SIC) data with fine spatial resolution and spatially continuous coverage are needed, for example, for estimating heat fluxes. Passive microwave measurements of the Advanced Scanning Microwave Radiometer 2 (AMSR2) offer spatial continuity, but are limited to spatial resolutions of 5 km and coarser. Thermal infrared data of the Moderate Resolution Imaging Spectroradiometer (MODIS) provide a spatial resolution of 1 km, but are limited to cloud-free scenes. We exploit the benefits of both and present a merged SIC dataset with 1 km spatial resolution and spatially continuous coverage for the Arctic. MODIS and AMSR2 SIC are retrieved separately and then merged by tuning the MODIS SIC to preserve the mean AMSR2 SIC. We first evaluate the variability of the dynamically retrieved MODIS ice tie-point. Varying the starting position of the area used for the tie-point retrieval changes the MODIS SIC by on average 1.9%, which we mitigate by considering different starting positions and using the average as ice tie-point. Furthermore, the SIC datasets are evaluated against a reference dataset derived from Sentinel-2A/B reflectances between February and May 2019. We find that the merged SIC are 1.9% smaller than the reference SIC if thin ice is considered as ice and 4.9% higher if thin ice is considered as water. There is only a slight bias (0.3%) between the MODIS and the merged SIC; however, the root mean square deviation of 5% indicates that the two datasets do yield different results. In an example of poor-quality MODIS SIC, we identify an unscreened cloud and high ice-surface temperature as reasons for the poor quality. Still, the merged SIC are of similar quality as the passive microwave SIC in this example. The benefit of merging MODIS and AMSR2 data is demonstrated by showing that the finer resolution of the merged SIC compared to the AMSR2 SIC allows an enhanced potential for the retrieval of leads. At the same time, the data are available regardless of clouds. Last, we provide uncertainty estimates. The MODIS and merged SIC uncertainty are between 5% and 10% from February to April and increase up to 25% (merged SIC) and 35% (MODIS SIC) in May. They are identified as conservative uncertainty estimates.


2021 ◽  
Vol 13 (12) ◽  
pp. 2283
Author(s):  
Hyangsun Han ◽  
Sungjae Lee ◽  
Hyun-Cheol Kim ◽  
Miae Kim

The Arctic sea ice concentration (SIC) in summer is a key indicator of global climate change and important information for the development of a more economically valuable Northern Sea Route. Passive microwave (PM) sensors have provided information on the SIC since the 1970s by observing the brightness temperature (TB) of sea ice and open water. However, the SIC in the Arctic estimated by operational algorithms for PM observations is very inaccurate in summer because the TB values of sea ice and open water become similar due to atmospheric effects. In this study, we developed a summer SIC retrieval model for the Pacific Arctic Ocean using Advanced Microwave Scanning Radiometer 2 (AMSR2) observations and European Reanalysis Agency-5 (ERA-5) reanalysis fields based on Random Forest (RF) regression. SIC values computed from the ice/water maps generated from the Korean Multi-purpose Satellite-5 synthetic aperture radar images from July to September in 2015–2017 were used as a reference dataset. A total of 24 features including the TB values of AMSR2 channels, the ratios of TB values (the polarization ratio and the spectral gradient ratio (GR)), total columnar water vapor (TCWV), wind speed, air temperature at 2 m and 925 hPa, and the 30-day average of the air temperatures from the ERA-5 were used as the input variables for the RF model. The RF model showed greatly superior performance in retrieving summer SIC values in the Pacific Arctic Ocean to the Bootstrap (BT) and Arctic Radiation and Turbulence Interaction STudy (ARTIST) Sea Ice (ASI) algorithms under various atmospheric conditions. The root mean square error (RMSE) of the RF SIC values was 7.89% compared to the reference SIC values. The BT and ASI SIC values had three times greater values of RMSE (20.19% and 21.39%, respectively) than the RF SIC values. The air temperatures at 2 m and 925 hPa and their 30-day averages, which indicate the ice surface melting conditions, as well as the GR using the vertically polarized channels at 23 GHz and 18 GHz (GR(23V18V)), TCWV, and GR(36V18V), which accounts for atmospheric water content, were identified as the variables that contributed greatly to the RF model. These important variables allowed the RF model to retrieve unbiased and accurate SIC values by taking into account the changes in TB values of sea ice and open water caused by atmospheric effects.


2021 ◽  
pp. 1-47
Author(s):  
Robin Clancy ◽  
Cecilia M. Bitz ◽  
Edward Blanchard-Wrigglesworth ◽  
Marie C. McGraw ◽  
Steven M. Cavallo

AbstractArctic cyclones are an extremely common, year-round phenomenon, with substantial influence on sea ice. However, few studies address the heterogeneity in the spatial patterns in the atmosphere and sea ice during Arctic cyclones. We investigate these spatial patterns by compositing on cyclones from 1985-2016 using a novel, cyclone-centered approach that reveals conditions as functions of bearing and distance from cyclone centers. An axisymmetric, cold core model for the structure of Arctic cyclones has previously been proposed, however, we show that the structure of Arctic cyclones is comparable to those in the mid-latitudes, with cyclonic surface winds, a warm, moist sector to the east of cyclones and a cold, dry sector to the west. There is no consensus on the impact of Arctic cyclones on sea ice, as some studies have shown that Arctic cyclones lead to sea ice growth and others to sea ice loss. Instead, we find that sea ice decreases to the east of Arctic cyclones and increases to the west, with the greatest changes occurring in the marginal ice zone. Using a sea ice model forced with prescribed atmospheric reanalysis, we reveal the relative importance of the dynamic and thermodynamic forcing of Arctic cyclones on sea ice. The dynamic and thermodynamic responses of sea ice concentration to cyclones are comparable in magnitude, however dynamic processes dominate the response of sea ice thickness and are the primary driver of the east-west difference in the sea ice response to cyclones.


2021 ◽  
Author(s):  
Francois Massonnet ◽  
Sara Fleury ◽  
Florent Garnier ◽  
Ed Blockley ◽  
Pablo Ortega Montilla ◽  
...  

<p>It is well established that winter and spring Arctic sea-ice thickness anomalies are a key source of predictability for late summer sea-ice concentration. While numerical general circulation models (GCMs) are increasingly used to perform seasonal predictions, they are not systematically taking advantage of the wealth of polar observations available. Data assimilation, the study of how to constrain GCMs to produce a physically consistent state given observations and their uncertainties, remains, therefore, an active area of research in the field of seasonal prediction. With the recent advent of satellite laser and radar altimetry, large-scale estimates of sea-ice thickness have become available for data assimilation in GCMs. However, the sea-ice thickness is never directly observed by altimeters, but rather deduced from the measured sea-ice freeboard (the height of the emerged part of the sea ice floe) based on several assumptions like the depth of snow on sea ice and its density, which are both often poorly estimated. Thus, observed sea-ice thickness estimates are potentially less reliable than sea-ice freeboard estimates. Here, using the EC-Earth3 coupled forecasting system and an ensemble Kalman filter, we perform a set of sensitivity tests to answer the following questions: (1) Does the assimilation of late spring observed sea-ice freeboard or thickness information yield more skilful predictions than no assimilation at all? (2) Should the sea-ice freeboard assimilation be preferred over sea-ice thickness assimilation? (3) Does the assimilation of observed sea-ice concentration provide further constraints on the prediction? We address these questions in the context of a realistic test case, the prediction of 2012 summer conditions, which led to the all-time record low in Arctic sea-ice extent. We finally formulate a set of recommendations for practitioners and future users of sea ice observations in the context of seasonal prediction.</p>


2021 ◽  
Author(s):  
Valentin Ludwig ◽  
Gunnar Spreen

<p>Sea–ice concentration, the surface fraction of ice in a given area, is a key component of the Arctic climate system, governing for example the ocean–atmosphere heat exchange. Satellite–based remote sensing offers the possibility for large–scale monitoring of the sea–ice concentration. Using passive microwave measurements, it is possible to observe the sea–ice concentration all year long, almost independently of cloud coverage. The spatial resolution of these measurements is limited to 5 km and coarser. Data from the visible and thermal infrared spectrum offer finer resolutions of 250 m–1 km, but need clear–sky scenes and, in case of visible data, sunlight. In previous work, we developed and analysed a merged dataset of passive microwave and thermal infrared data, combining AMSR2 and MODIS satellite data at 1 km spatial resolution. It has benefits over passive microwave data in terms of the finer spatial resolution and an enhanced potential for lead detection. At the same time, it outperforms thermal infrared data due to its spatially continuous coverage and the statistical consistency with the extensively evaluated passive microwave data. Due to higher surface temperatures in summer, the thermal–infrared based retrieval is limited to winter and spring months. In this contribution, we present first results of extending the existing dataset to summer by using visible data instead of thermal infrared data. The reflectance contrast between ice and water is used for the sea–ice concentration retrieval and results of merging visible and microwave data at 1 km spatial resolution are presented. Difficulties for both, the microwave and visual, data are surface melt processes during summer, which make sea–ice concentration retrieval more challenging. The merged microwave, infrared and visual dataset opens the possibility for a year–long, spatially continuous sea ice concentration dataset at a spatial resolution of 1 km.</p>


2019 ◽  
Vol 13 (2) ◽  
pp. 521-543 ◽  
Author(s):  
Leandro Ponsoni ◽  
François Massonnet ◽  
Thierry Fichefet ◽  
Matthieu Chevallier ◽  
David Docquier

Abstract. The ocean–sea ice reanalyses are one of the main sources of Arctic sea ice thickness data both in terms of spatial and temporal resolution, since observations are still sparse in time and space. In this work, we first aim at comparing how the sea ice thickness from an ensemble of 14 reanalyses compares with different sources of observations, such as moored upward-looking sonars, submarines, airbornes, satellites, and ice boreholes. Second, based on the same reanalyses, we intend to characterize the timescales (persistence) and length scales of sea ice thickness anomalies. We investigate whether data assimilation of sea ice concentration by the reanalyses impacts the realism of sea ice thickness as well as its respective timescales and length scales. The results suggest that reanalyses with sea ice data assimilation do not necessarily perform better in terms of sea ice thickness compared with the reanalyses which do not assimilate sea ice concentration. However, data assimilation has a clear impact on the timescales and length scales: reanalyses built with sea ice data assimilation present shorter timescales and length scales. The mean timescales and length scales for reanalyses with data assimilation vary from 2.5 to 5.0 months and 337.0 to 732.5 km, respectively, while reanalyses with no data assimilation are characterized by values from 4.9 to 7.8 months and 846.7 to 935.7 km, respectively.


Sign in / Sign up

Export Citation Format

Share Document