scholarly journals Seasonal transition dates can reveal biases in Arctic sea ice simulations

2020 ◽  
Author(s):  
Abigail Smith ◽  
Alexandra Jahn ◽  
Muyin Wang

Abstract. Arctic sea ice experiences a dramatic annual cycle, and seasonal ice loss and growth can be characterized by various metrics: melt onset, break-up, opening, freeze onset, freeze-up and closing. By evaluating a range of seasonal sea ice metrics, CMIP6 sea ice simulations can be evaluated in more detail than by using traditional metrics alone, such as sea ice area. We show that models capture the observed asymmetry in seasonal sea ice transitions, with spring ice loss taking about 1.5–2 months longer than fall ice growth. The largest impacts of internal variability are seen in the inflow regions of melt and freeze onset dates, but all metrics show pan-Arctic model spreads exceeding the internal variability. Through climate model evaluation in the context of both observations and internal variability, we show that biases in seasonal transition dates can compensate for other unrealistic aspects of simulated sea ice. In some models, this leads to September sea ice areas in agreement with observations for the wrong reasons.

2020 ◽  
Vol 14 (9) ◽  
pp. 2977-2997
Author(s):  
Abigail Smith ◽  
Alexandra Jahn ◽  
Muyin Wang

Abstract. Arctic sea ice experiences a dramatic annual cycle, and seasonal ice loss and growth can be characterized by various metrics: melt onset, breakup, opening, freeze onset, freeze-up, and closing. By evaluating a range of seasonal sea ice metrics, CMIP6 sea ice simulations can be evaluated in more detail than by using traditional metrics alone, such as sea ice area. We show that models capture the observed asymmetry in seasonal sea ice transitions, with spring ice loss taking about 1–2 months longer than fall ice growth. The largest impacts of internal variability are seen in the inflow regions for melt and freeze onset dates, but all metrics show pan-Arctic model spreads exceeding the internal variability range, indicating the contribution of model differences. Through climate model evaluation in the context of both observations and internal variability, we show that biases in seasonal transition dates can compensate for other unrealistic aspects of simulated sea ice. In some models, this leads to September sea ice areas in agreement with observations for the wrong reasons.


2021 ◽  
Author(s):  
Lettie Roach ◽  
Edward Blanchard-Wrigglesworth ◽  
Cecilia Bitz

<p><span>It is broadly accepted that variability and trends in Arctic sea ice remain poorly simulated even in the most state-of-the-art coupled climate and climate prediction models. Here, we show that a modern coupled climate model (CESM1) is in fact able to reproduce the observed variability and decline in summer sea ice when winds are nudged towards values from reanalysis.<span>  </span>We argue that the nudged-winds framework provides a straightforward way of evaluating models by removing much of the contribution of internal variability, revealing model successes and biases. The results demonstrate the importance of atmospheric circulation in driving interannual variability in sea ice and near-surface air temperatures, particularly in the summer. Finally, we will discuss the potential role of ocean surface waves in driving variability in Arctic sea ice, based on observational analysis and new coupled modelling results.</span></p>


2017 ◽  
Vol 36 (8) ◽  
pp. 1-8 ◽  
Author(s):  
Fei Huang ◽  
Xiao Zhou ◽  
Hong Wang

2021 ◽  
Author(s):  
Harry Heorton ◽  
Michel Tsamados ◽  
Paul Holland ◽  
Jack Landy

<p><span>We combine satellite-derived observations of sea ice concentration, drift, and thickness to provide the first observational decomposition of the dynamic (advection/divergence) and thermodynamic (melt/growth) drivers of wintertime Arctic sea ice volume change. Ten winter growth seasons are analyzed over the CryoSat-2 period between October 2010 and April 2020. Sensitivity to several observational products is performed to provide an estimated uncertainty of the budget calculations. The total thermodynamic ice volume growth and dynamic ice losses are calculated with marked seasonal, inter-annual and regional variations</span><span>. Ice growth is fastest during Autumn, in the Marginal Seas and over first year ice</span><span>. Our budget decomposition methodology can help diagnose the processes confounding climate model predictions of sea ice. We make our product and code available to the community in monthly pan-Arctic netcdft files for the entire October 2010 to April 2020 period.</span></p>


2012 ◽  
Vol 25 (5) ◽  
pp. 1431-1452 ◽  
Author(s):  
Alexandra Jahn ◽  
Kara Sterling ◽  
Marika M. Holland ◽  
Jennifer E. Kay ◽  
James A. Maslanik ◽  
...  

To establish how well the new Community Climate System Model, version 4 (CCSM4) simulates the properties of the Arctic sea ice and ocean, results from six CCSM4 twentieth-century ensemble simulations are compared here with the available data. It is found that the CCSM4 simulations capture most of the important climatological features of the Arctic sea ice and ocean state well, among them the sea ice thickness distribution, fraction of multiyear sea ice, and sea ice edge. The strongest bias exists in the simulated spring-to-fall sea ice motion field, the location of the Beaufort Gyre, and the temperature of the deep Arctic Ocean (below 250 m), which are caused by deficiencies in the simulation of the Arctic sea level pressure field and the lack of deep-water formation on the Arctic shelves. The observed decrease in the sea ice extent and the multiyear ice cover is well captured by the CCSM4. It is important to note, however, that the temporal evolution of the simulated Arctic sea ice cover over the satellite era is strongly influenced by internal variability. For example, while one ensemble member shows an even larger decrease in the sea ice extent over 1981–2005 than that observed, two ensemble members show no statistically significant trend over the same period. It is therefore important to compare the observed sea ice extent trend not just with the ensemble mean or a multimodel ensemble mean, but also with individual ensemble members, because of the strong imprint of internal variability on these relatively short trends.


2019 ◽  
Vol 32 (5) ◽  
pp. 1361-1380 ◽  
Author(s):  
J. Ono ◽  
H. Tatebe ◽  
Y. Komuro

Abstract The mechanisms for and predictability of a drastic reduction in the Arctic sea ice extent (SIE) are investigated using the Model for Interdisciplinary Research on Climate (MIROC) version 5.2. Here, a control (CTRL) with forcing fixed at year 2000 levels and perfect-model ensemble prediction (PRED) experiments are conducted. In CTRL, three (model years 51, 56, and 57) drastic SIE reductions occur during a 200-yr-long integration. In year 56, the sea ice moves offshore in association with a positive phase of the summer Arctic dipole anomaly (ADA) index and melts due to heat input through the increased open water area, and the SIE drastically decreases. This provides the preconditioning for the lowest SIE in year 57 when the Arctic Ocean interior is in a warm state and the spring sea ice volume has a large negative anomaly due to drastic ice reduction in the previous year. Although the ADA is one of the key mechanisms behind sea ice reduction, it does not always cause a drastic reduction. Our analysis suggests that wind direction favoring offshore ice motion is a more important factor for drastic ice reduction events. In years experiencing drastic ice reduction events, the September SIE can be skillfully predicted in PRED started from July, but not from April. This is because the forecast errors for the July sea level pressure and those for the sea ice concentration and sea ice thickness along the ice edge are large in PRED started from April.


2017 ◽  
Author(s):  
Jamie G. L. Rae ◽  
Alexander D. Todd ◽  
Edward W. Blockley ◽  
Jeff K. Ridley

Abstract. This paper presents an analysis of Arctic summer cyclones in a climate model and in a reanalysis dataset. A cyclone identification and tracking algorithm is run for output from model simulations at two resolutions, and for the reanalysis, using two different tracking variables (mean sea-level pressure and 850 hPa vorticity) for identification of the cyclones. Correlations between characteristics of the cyclones and September Arctic sea ice extent are investigated, and the influence of the tracking variable, the spatial resolution of the model, and spatial and temporal sampling, on the correlations is explored. We conclude that the correlations obtained depend on all of these factors, and that care should be taken when interpreting the results of such analyses, especially when the focus is on one reanalysis, or output from one model, analysed with a single tracking variable for a short time period.


Sign in / Sign up

Export Citation Format

Share Document