scholarly journals High-resolution subglacial topography around Dome Fuji, Antarctica, based on ground-based radar surveys conducted over 30 years

2021 ◽  
Author(s):  
Shun Tsutaki ◽  
Shuji Fujita ◽  
Kenji Kawamura ◽  
Ayako Abe-Ouchi ◽  
Kotaro Fukui ◽  
...  

Abstract. The retrieval of continuous ice core records of more than 1 Myr is an important challenge in palaeo-climatology. For identifying suitable sites for drilling such ice, the knowledge of the subglacial topography and englacial layering is crucial. For this purpose, extensive ground-based ice radar surveys were done over Dome Fuji in the East Antarctic plateau during the 2017–2018 and 2018–2019 austral summers by the Japanese Antarctic Research Expedition, on the basis of ground-based radar surveys conducted over the previous ~ 30 years. High-gain Yagi antennae were used to improve the antenna beam directivity and thus attain a significant decrease in hyperbolic features in the echoes from mountainous ice-bedrock interfaces. We combined the new ice thickness data with the previous ground-based data, recorded since the 1980s, to generate an accurate high-spatial-resolution (up to 0.5 km between survey lines) ice thickness map. This map revealed a complex landscape composed of networks of subglacial valleys and highlands, which sets substantial constraints for identifying possible locations for new drilling. In addition, our map was compared with a few bed maps compiled by earlier independent efforts based on airborne radar data to examine the difference in features between sets of the data.

2013 ◽  
Vol 59 (213) ◽  
pp. 9-20 ◽  
Author(s):  
Reinhard Drews ◽  
Carlos Martín ◽  
Daniel Steinhage ◽  
Olaf Eisen

AbstractWe present a comprehensive approach (including field data, remote sensing and an anisotropic ice-flow model) to characterize Halvfarryggen ice dome in coastal Dronning Maud Land, Antarctica. This is a potential drill site for the International Partnerships in Ice Core Sciences, which has identified the need for ice cores covering atmospheric conditions during the last few millennia. We derive the surface topography, the ice stratigraphy from radar data, and accumulation rates which vary from 400 to 1670 kg m−2 a−1 due to preferred wind directions and changing surface slope. The stratigraphy shows anticlines and synclines beneath the divides. We transfer Dansgaard–Johnsen age–depth scales from the flanks along isochrones to the divide in the upper 20–50% of the ice thickness and show that they compare well with the results of a full-Stokes, anisotropic ice-flow model which predicts (1) 11 ka BP ice at 90% of the ice thickness, (2) a temporally stable divide for at least 2700–4500 years, (3) basal temperatures below the melting point (−12°C to −5°C) and (4) a highly developed crystal orientation fabric (COF). We suggest drilling into the apices of the deep anticlines, providing a good compromise between record length and temporal resolution and also facilitating studies of the interplay of anisotropic COF and ice flow.


2017 ◽  
Author(s):  
Nanna B. Karlsson ◽  
Tobias Binder ◽  
Graeme Eagles ◽  
Veit Helm ◽  
Frank Pattyn ◽  
...  

Abstract. A key objective in palaeo-climatology is the retrieval of a continuous Antarctic ice-core record dating back 1.5 Ma. The identification of a suitable Antarctic site requires sufficient knowledge of the subglacial landscape beneath the Antarctic Ice Sheet. Here, we present new ice thickness information from the Dome Fuji region, East Antarctica, based on airborne radar surveys conducted during the 2014/15 and 2016/17 southern summers. Compared to previous maps of the region, the new dataset shows a more complex landscape with networks of valleys and mountain plateaus. We use the new dataset as input in a thermokinematic model that incorporates uncertainties in geothermal heat flux values in order to improve the predictions of potential ice-core sites. Our results for obtaining an old ice core show that especially the region immediately south of Dome Fuji station persists as a good candidate site. An initial assessment of basal conditions revealed the existence several wet-based areas. Further radar data analysis shows overall high continuity of layer stratigraphy in the region. This indicates that extending the age-depth information from the Dome Fuji ice core to a new ice-core drill site is a viable option.


2019 ◽  
Vol 13 (3) ◽  
pp. 827-843 ◽  
Author(s):  
Benedict T. I. Reinardy ◽  
Adam D. Booth ◽  
Anna L. C. Hughes ◽  
Clare M. Boston ◽  
Henning Åkesson ◽  
...  

Abstract. This study suggests that cold-ice processes may be more widespread than previously assumed, even within temperate glacial systems. We present the first systematic mapping of cold ice at the snout of the temperate glacier Midtdalsbreen, an outlet of the Hardangerjøkulen icefield (Norway), from 43 line kilometres of ground-penetrating radar data. Results show a 40 m wide cold-ice zone within the majority of the glacier snout, where ice thickness is <10 m. We interpret ice to be cold-based across this zone, consistent with basal freeze-on processes involved in the deposition of moraines. We also find at least two zones of cold ice up to 15 m thick within the ablation area, occasionally extending to the glacier bed. There are two further zones of cold ice up to 30 m thick in the accumulation area, also extending to the glacier bed. Cold-ice zones in the ablation area tend to correspond to areas of the glacier that are covered by late-lying seasonal snow patches that reoccur over multiple years. Subglacial topography and the location of the freezing isotherm within the glacier and underlying subglacial strata likely influence the transport and supply of supraglacial debris and formation of controlled moraines. The wider implication of this study is the possibility that, with continued climate warming, temperate environments with primarily temperate glaciers could become polythermal in forthcoming decades with (i) persisting thinning and (ii) retreat to higher altitudes where subglacial permafrost could be and/or become more widespread. Adversely, the number and size of late-lying snow patches in ablation areas may decrease and thereby reduce the extent of cold ice, reinforcing the postulated change in the thermal regime.


2018 ◽  
Vol 12 (7) ◽  
pp. 2413-2424 ◽  
Author(s):  
Nanna B. Karlsson ◽  
Tobias Binder ◽  
Graeme Eagles ◽  
Veit Helm ◽  
Frank Pattyn ◽  
...  

Abstract. A key objective in palaeo-climatology is the retrieval of a continuous Antarctic ice-core record dating back 1.5 Ma. The identification of a suitable Antarctic site requires sufficient knowledge of the subglacial landscape beneath the Antarctic Ice Sheet. Here, we present new ice thickness information from the Dome Fuji region, East Antarctica, based on airborne radar surveys conducted during the 2014/15 and 2016/17 southern summers. Compared to previous maps of the region, the new dataset shows a more complex landscape with networks of valleys and mountain plateaus. We use the new dataset as input in a thermokinematic model that incorporates uncertainties in geothermal heat flux values in order to improve the predictions of potential ice-core sites. Our results show that especially the region immediately south of Dome Fuji station persists as a good candidate site for obtaining an old ice core. An initial assessment of basal conditions revealed the existence of what appears to be subglacial lakes. Further radar data analysis shows overall high continuity of layer stratigraphy in the region. This indicates that extending the age–depth information from the Dome Fuji ice core to a new ice-core drill site is a viable option.


2004 ◽  
Vol 39 ◽  
pp. 321-325 ◽  
Author(s):  
Alessandro Forieri ◽  
Luisa Zuccoli ◽  
Alfredo Bini ◽  
Achille Zirizzotti ◽  
Frédérique Remy ◽  
...  

AbstractA new bedrock map of the Dome C area is presented, based on all radar data collected during Italian Antarctic Expeditions in 1995, 1997, 1999 and 2001. The map clearly distinguishes the Dome C plateau, along with valleys and ridges. The plateau develops at three different altimetric levels, and its morphology is characterized by hills and closed depressions. There are no visible features which can be ascribed to glacial erosion or deposition. The major valley is 15 km wide and 500 m deep; its axis is parallel to that of other valleys and ridges in the plateau. The valley bottom is not flat, but contains a saddle at its centre. The morphology of the major valley may be considered a relict one which was not modified by the overlying ice cap. Two large ridges, characterized by hills, saddles and depressions, lie near the boundaries of the area. The map is used to recalculate ice thickness below the European Project for Ice Coring in Antarctica (EPICA) borehole. The new thickness is 3300 m, 50m greater than before, implying that the expected palaeoclimate record from the ice core could extend back >800 kyr.


2018 ◽  
Vol 12 (8) ◽  
pp. 2773-2787 ◽  
Author(s):  
Brice Van Liefferinge ◽  
Frank Pattyn ◽  
Marie G. P. Cavitte ◽  
Nanna B. Karlsson ◽  
Duncan A. Young ◽  
...  

Abstract. To resolve the mechanisms behind the major climate reorganisation, which occurred between 0.9 and 1.2 Ma, the recovery of a suitable 1.5 million-year-old ice core is fundamental. The quest for an Oldest Ice core requires a number of key boundary conditions, of which the poorly known basal geothermal heat flux (GHF) is lacking. We use a transient thermodynamical 1-D vertical model that solves for the rate of change of temperature in the vertical, with surface temperature and modelled GHF as boundary conditions. For each point on the ice sheet, the model is forced with variations in atmospheric conditions over the last 2 Ma and modelled ice-thickness variations. The process is repeated for a range of GHF values to determine the value of GHF that marks the limit between frozen and melting conditions over the whole ice sheet, taking into account 2 Ma of climate history. These threshold values of GHF are statistically compared to existing GHF data sets. The new probabilistic GHF fields obtained for the ice sheet thus provide the missing boundary conditions in the search for Oldest Ice. High spatial resolution radar data are examined locally in the Dome Fuji and Dome C regions, as these represent the ice core community's primary drilling sites. GHF, bedrock variability, ice thickness and other essential criteria combined highlight a dozen major potential Oldest Ice sites in the vicinity of Dome Fuji and Dome C, where GHF could allow for Oldest Ice.


2018 ◽  
Author(s):  
Brice Van Liefferinge ◽  
Frank Pattyn ◽  
Marie G. P. Cavitte ◽  
Nanna B. Karlsson ◽  
Duncan A. Young ◽  
...  

Abstract. To resolve the mechanisms behind the major climate reorganisation which occurred between 0.9 and 1.2 Ma, the recovery of a suitable 1.5 million-year-old ice core is fundamental. The quest for such an Oldest Ice core requires a number of key boundary conditions, of which the poorly known basal geothermal heat flux (GHF) is lacking. We use a transient thermodynamical 1D vertical model that solves for the rate of change of temperature in the vertical, with surface temperature and modelled GHF as boundary conditions. For each point on the ice sheet, the model is forced with variations in atmospheric conditions over the last 2 Ma, and modelled ice-thickness variations. The process is repeated for a range of GHF values to determine the value of GHF that marks the limit between frozen and melting conditions over the whole ice sheet, taking into account 2 Ma of climate history. These threshold values of GHF are statistically compared to existing GHF data sets. The new probabilistic GHF fields obtained for the ice sheet thus provide the missing boundary conditions in the search for Oldest Ice. High spatial resolution radar data are examined locally in the Dome Fuji and Dome C regions, as these represent the ice core community's primary drilling sites. GHF, bedrock variability, ice thickness and other essential criteria combined highlight a dozen major potential Oldest Ice sites in the vicinity of Dome Fuji and Dome C, where GHF allows for Oldest Ice.


2021 ◽  
pp. 1-19
Author(s):  
Melchior Grab ◽  
Enrico Mattea ◽  
Andreas Bauder ◽  
Matthias Huss ◽  
Lasse Rabenstein ◽  
...  

Abstract Accurate knowledge of the ice thickness distribution and glacier bed topography is essential for predicting dynamic glacier changes and the future developments of downstream hydrology, which are impacting the energy sector, tourism industry and natural hazard management. Using AIR-ETH, a new helicopter-borne ground-penetrating radar (GPR) platform, we measured the ice thickness of all large and most medium-sized glaciers in the Swiss Alps during the years 2016–20. Most of these had either never or only partially been surveyed before. With this new dataset, 251 glaciers – making up 81% of the glacierized area – are now covered by GPR surveys. For obtaining a comprehensive estimate of the overall glacier ice volume, ice thickness distribution and glacier bed topography, we combined this large amount of data with two independent modeling algorithms. This resulted in new maps of the glacier bed topography with unprecedented accuracy. The total glacier volume in the Swiss Alps was determined to be 58.7 ± 2.5 km3 in the year 2016. By projecting these results based on mass-balance data, we estimated a total ice volume of 52.9 ± 2.7 km3 for the year 2020. Data and modeling results are accessible in the form of the SwissGlacierThickness-R2020 data package.


2019 ◽  
Vol 31 (6) ◽  
pp. 332-344 ◽  
Author(s):  
Jānis Karušs ◽  
Kristaps Lamsters ◽  
Anatolii Chernov ◽  
Māris Krievāns ◽  
Jurijs Ješkins

AbstractThis study presents the first subglacial topography and ice thickness models of the largest ice caps of the Argentine Islands, Wilhelm Archipelago, West Antarctica. During this study, ground-penetrating radar was used to map the thickness and inner structure of the ice caps. Digital surface models of all studied islands were created from aerial images obtained with a small-sized unmanned aerial vehicle and used for the construction of subglacial topography models. Ice caps of the Argentine Islands cover ~50% of the land surface of the islands on average. The maximum thickness of only two islands (Galindez and Skua) exceeds 30 m, while the average thickness of all islands is only ~5 m. The maximum ice thickness reaches 35.3 m on Galindez Island. The ice thickness and glacier distribution are mainly governed by prevailing wind direction from the north. This has created the prominent narrow ice ridges on Uruguay and Irizar islands, which are not supported by topographic obstacles, as well as the elongated shape of other ice caps. The subglacial topography of the ice caps is undulated and mainly dependent on the geological structure and composition of magmatic rocks.


2021 ◽  
pp. 1-9
Author(s):  
Stephen A. Veitch ◽  
Marianne Karplus ◽  
Galen Kaip ◽  
Lucia F. Gonzalez ◽  
Jason M. Amundson ◽  
...  

Abstract Lemon Creek Glacier, a temperate valley glacier in the Juneau Icefield of Southeast Alaska, is the site of long running (>60 years) glaciological studies. However, the most recent published estimates of its thickness and subglacial topography come from two ~50 years old sources that are not in agreement and do not account for the effects of years of negative mass balance. We collected a 1-km long active-source seismic line on the upper section of the glacier parallel and near to the centerline of the glacier, roughly straddling the equilibrium-line altitude. We used these data to perform joint reflection-refraction velocity modeling and reflection imaging of the glacier bed. We find that this upper section of Lemon Creek Glacier is as much as 150 m (~65%) thicker than previously suggested with a large overdeepening in an area previously believed to have a uniform thickness. Our results lead us to reinterpret the impact of basal motion on ice flow and have a significant impact on expectations of subglacial hydrology. We suggest that further efforts to develop a whole-glacier model of subglacial topography are necessary to support studies that require accurate models of ice thickness and subglacial topography.


Sign in / Sign up

Export Citation Format

Share Document