scholarly journals Reassessing seasonal sea ice predictability of the Pacific-Arctic sector using a Markov model

2021 ◽  
Author(s):  
Yunhe Wang ◽  
Xiaojun Yuan ◽  
Haibo Bi ◽  
Mitchell Bushuk ◽  
Yu Liang ◽  
...  

Abstract. In this study, a regional linear Markov model is developed to assess seasonal sea ice predictability in the Arctic Pacific sector. Unlike an earlier pan-Arctic Markov model that was developed with one set of variables for all seasons, the regional model consists of four seasonal modules with different sets of predictor variables, accommodating seasonally-varying driving processes. A series of sensitivity tests are performed to evaluate the predictive skill in cross-validated experiments and to determine the best model configuration for each season. The prediction skill, as measured by the percentage of grid points with significant correlations (PGS), increased by 75 % in the Bering Sea and 16 % in the Sea of Okhotsk relative to the pan-Arctic model. The regional Markov model's skill is also superior to the skill of an anomaly persistence forecast. Sea ice concentration (SIC) trends significantly contribute to the model skill. However, the model retains skill for detrended sea ice extent predictions up to 6 month lead times in the Bering Sea and the Sea of Okhotsk. We find that surface radiative fluxes contribute to predictability in the cold season and geopotential height and winds play an indispensable role in the warm-season forecast, contrasting to the thermodynamic processes dominating the pan-Arctic predictability. The regional model can also capture the seasonal reemergence of predictability, which is missing in the pan-Arctic model.

2005 ◽  
Vol 42 ◽  
pp. 380-388 ◽  
Author(s):  
Kunio Rikiishi ◽  
Shinya Takatsuji

AbstractCharacteristic features of the growth of sea-ice extent in the Sea of Okhotsk are discussed statistically in relation to the surface wind and air temperature over the Okhotsk basin. It is shown that cold-air advection from the continent is not the only factor for the growth of ice extent: air-mass transformation with fetch (downwind distance from the coast) is another important factor. Using weekly growth rates of ice extent and objectively analyzed meteorological data, it is shown that the ice cover extends when cold northerly/northwesterly winds blow, whereas the ice cover retreats when warm northeasterly/easterly winds blow. It is concluded that the advance/retreat of the Sea of Okhotsk ice cover is largely determined by the atmospheric circulation, which is in turn controlled by the position and intensity of the Aleutian low. Occasional out-of-phase fluctuations between the Sea of Okhotsk and Bering Sea ice covers are found to occur when an intensified Aleutian low is located in the mid-western part of the Bering Sea and induces cold northwesterly winds to the Okhotsk basin and warm southeasterly winds to the Bering Sea, or when a weakened Aleutian low is displaced eastward and induces cold northeasterly winds to the Bering Sea and warm northeasterly winds to the Okhotsk basin.


1987 ◽  
Vol 9 ◽  
pp. 236-236
Author(s):  
D.J. Cavalieri ◽  
C.L. Parkinson

The seasonal sea-ice cover of the combined Bering and Okhotsk Seas at the time of maximum ice extent is almost 2 × 106 km2 and exceeds that of any other seasonal sea-ice zone in the Northern Hemisphere. Although both seas are relatively shallow bodies of water overlying continental shelf regions, there are important geographical differences. The Sea of Okhotsk is almost totally enclosed, being bounded to the north and west by Siberia and Sakhalin Island, and to the east by Kamchatka Peninsula. In contrast, the Bering Sea is the third-largest semi-enclosed sea in the world, with a surface area of 2.3 × 106 km2, and is bounded to the west by Kamchatka Peninsula, to the east by the Alaskan coast, and to the south by the Aleutian Islands arc.While the relationship between the regional oceanography and meteorology and the sea-ice covers of both the Bering Sea and Sea of Okhotsk have been studied individually, relatively little attention has been given to the occasional out-of-phase relationship between the fluctuations in the sea-ice extent of these two large seas. In this study, we present 3 day averaged sea-ice extent data obtained from the Nimbus-5 Electrically Scanning Microwave Radiometer (ESMR-5) for the four winters for which ESMR-5 data were available, 1973 through 1976, and document those periods for which there is an out-of-phase relationship in the fluctuations of the ice cover between the Bering Sea and the Sea of Okhotsk. Further, mean sea-level pressure data are also analyzed and compared with the time series of sea-ice extent data to provide a basis for determining possible associations between the episodes of out-of-phase fluctuations and atmospheric circulation patterns.Previous work by Campbell and others (1981) using sea-ice concentrations also derived from ESMR-5 data noted this out-of-phase relationship between the two ice packs in 1973 and 1976. The authors commented that the out-of-phase relationship is “... surprising as these are adjacent seas, and one would assume that they had similar meteorologic environments”. We argue here that the out-of-phase relationship is consistent with large-scale atmospheric circulation patterns, since the two seas span a range of longitude of about 60°, corresponding to a half wavelength of a zonal wave-number 3, and hence are quite susceptible to changes in the amplitude and phase of large-scale atmospheric waves.


2001 ◽  
Vol 33 ◽  
pp. 449-456 ◽  
Author(s):  
Kazutaka Tateyama ◽  
Hiroyuki Enomoto

AbstractSea-ice fluctuations in the Sea of Okhotsk and the Bering Sea during the winters of 1992−99 were investigated by using the Special Sensor Microwave/ Imager dataset and a new ice-property retrieval algorithm This algorithm can distinguish between ice types such as fast ice floes, young ice and new ice, in an area covered by concentrations of >80% ice, and also has improved display resolution because it uses one of the 85 GHz channels. The ice thicknesses derived from the ice-thickness parameter of the new algorithm were compared with ship-based ice-thickness measurements, and were assumed to be 1−10, 11−34, 35−85 and 86−120 cm for new ice, young ice, floes (first-year ice) and fast ice, respectively. The results showed that ice volume can be small even if the ice area is large, due to thinness of the ice (e.g. in 1999 in the Sea of Okhotsk). A significant out-of-phase response, i.e. ice volume is larger in the Sea of Okhotsk when ice volume is smaller in the Bering Sea, was observed. The period of this see-saw showed two different time-scales, which were short (1 week) and long (2−4 weeks).


2012 ◽  
Vol 6 (4) ◽  
pp. 881-889 ◽  
Author(s):  
D. J. Cavalieri ◽  
C. L. Parkinson

Abstract. Analyses of 32 yr (1979–2010) of Arctic sea ice extents and areas derived from satellite passive microwave radiometers are presented for the Northern Hemisphere as a whole and for nine Arctic regions. There is an overall negative yearly trend of −51.5 ± 4.1 × 103 km2 yr−1 (−4.1 ± 0.3% decade−1) in sea ice extent for the hemisphere. The yearly sea ice extent trends for the individual Arctic regions are all negative except for the Bering Sea: −3.9 ± 1.1 × 103 km2 yr−1 (−8.7 ± 2.5% decade−1) for the Seas of Okhotsk and Japan, +0.3 ± 0.8 × 103 km2 yr−1 (+1.2 ± 2.7% decade−1) for the Bering Sea, −4.4 ± 0.7 × 103 km2 yr−1 (−5.1 ± 0.9% decade−1) for Hudson Bay, −7.6 ± 1.6 × 103 km2 yr−1 (−8.5 ± 1.8% decade−1) for Baffin Bay/Labrador Sea, −0.5 ± 0.3 × 103 km2 yr−1 (−5.9 ± 3.5% decade−1) for the Gulf of St. Lawrence, −6.5 ± 1.1 × 103 km2 yr−1 (−8.6 ± 1.5% decade−1) for the Greenland Sea, −13.5 ± 2.3 × 103 km2 yr−1 (−9.2 ± 1.6% decade−1) for the Kara and Barents Seas, −14.6 ± 2.3 × 103 km2 yr−1 (−2.1 ± 0.3% decade−1) for the Arctic Ocean, and −0.9 ± 0.4 × 103 km2 yr−1 (−1.3 ± 0.5% decade−1) for the Canadian Archipelago. Similarly, the yearly trends for sea ice areas are all negative except for the Bering Sea. On a seasonal basis for both sea ice extents and areas, the largest negative trend is observed for summer with the next largest negative trend being for autumn. Both the sea ice extent and area trends vary widely by month depending on region and season. For the Northern Hemisphere as a whole, all 12 months show negative sea ice extent trends with a minimum magnitude in May and a maximum magnitude in September, whereas the corresponding sea ice area trends are smaller in magnitude and reach minimum and maximum values in March and September.


2012 ◽  
Vol 6 (2) ◽  
pp. 957-979 ◽  
Author(s):  
D. J. Cavalieri ◽  
C. L. Parkinson

Abstract. Analyses of 32 yr (1979–2010) of Arctic sea ice extents and areas derived from satellite passive microwave radiometers are presented for the Northern Hemisphere as a whole and for nine Arctic regions. There is an overall negative yearly trend of −51.5 ± 4.1 × 103 km2 yr−1 (−4.1 ± 0.3% decade−1) in sea ice extent for the hemisphere. The sea ice extent trends for the individual Arctic regions are all negative except for the Bering Sea: −3.9 ± 1.1 × 103 km2 yr−1 (−8.7 ± 2.5% decade−1) for the Seas of Okhotsk and Japan, +0.3 ± 0.8 × 103 km2 yr−1 (+1.2 ± 2.7% decade−1) for the Bering Sea, −4.4 ± 0.7 × 103 km2 yr−1 (−5.1 ± 0.9% decade−1) for Hudson Bay, −7.6 ± 1.6 × 103 km2 yr−1 (−8.5 ± 1.8% decade−1) for Baffin Bay/Labrador Sea, −0.5 ± 0.3 × 103 km2 yr−1 (−5.9 ± 3.5% decade−1) for the Gulf of St. Lawrence, −6.5 ± 1.1 × 103 km2 yr−1 (−8.6 ± 1.5% decade−1) for the Greenland Sea, −13.5 ± 2.3 × 103 km2 yr−1 (−9.2 ± 1.6% decade−1) for the Kara and Barents Seas, −14.6 ± 2.3 × 103 km2 yr−1 (−2.1 ± 0.3% decade−1) for the Arctic Ocean, and −0.9 ± 0.4 × 103 km2 yr−1 (−1.3 ± 0.5% decade−1) for the Canadian Archipelago. Similarly, the yearly trends for sea ice areas are all negative except for the Bering Sea. On a seasonal basis for both sea ice extents and areas, the largest negative trend is observed for summer with the next largest negative trend being for autumn.


2003 ◽  
Vol 108 (0) ◽  
pp. 85-96 ◽  
Author(s):  
Tsugukazu OKUMURA ◽  
Akira FUTAMURA ◽  
Naoto IWASAKA ◽  
Kiyotoshi OTSUKA

2016 ◽  
Vol 12 (9) ◽  
pp. 20160275 ◽  
Author(s):  
G. J. Divoky ◽  
D. C. Douglas ◽  
I. J. Stenhouse

Mandt's black guillemot ( Cepphus grylle mandtii ) is one of the few seabirds associated in all seasons with Arctic sea ice, a habitat that is changing rapidly. Recent decreases in summer ice have reduced breeding success and colony size of this species in Arctic Alaska. Little is known about the species' movements and distribution during the nine month non-breeding period (September–May), when changes in sea ice extent and composition are also occurring and predicted to continue. To examine bird movements and the seasonal role of sea ice to non-breeding Mandt's black guillemots, we deployed and recovered ( n = 45) geolocators on individuals at a breeding colony in Arctic Alaska during 2011–2015. Black guillemots moved north to the marginal ice zone (MIZ) in the Beaufort and Chukchi seas immediately after breeding, moved south to the Bering Sea during freeze-up in December, and wintered in the Bering Sea January–April. Most birds occupied the MIZ in regions averaging 30–60% sea ice concentration, with little seasonal variation. Birds regularly roosted on ice in all seasons averaging 5 h d −1 , primarily at night. By using the MIZ, with its roosting opportunities and associated prey, black guillemots can remain in the Arctic during winter when littoral waters are completely covered by ice.


1987 ◽  
Vol 9 ◽  
pp. 236
Author(s):  
D.J. Cavalieri ◽  
C.L. Parkinson

The seasonal sea-ice cover of the combined Bering and Okhotsk Seas at the time of maximum ice extent is almost 2 × 106 km2 and exceeds that of any other seasonal sea-ice zone in the Northern Hemisphere. Although both seas are relatively shallow bodies of water overlying continental shelf regions, there are important geographical differences. The Sea of Okhotsk is almost totally enclosed, being bounded to the north and west by Siberia and Sakhalin Island, and to the east by Kamchatka Peninsula. In contrast, the Bering Sea is the third-largest semi-enclosed sea in the world, with a surface area of 2.3 × 106 km2, and is bounded to the west by Kamchatka Peninsula, to the east by the Alaskan coast, and to the south by the Aleutian Islands arc. While the relationship between the regional oceanography and meteorology and the sea-ice covers of both the Bering Sea and Sea of Okhotsk have been studied individually, relatively little attention has been given to the occasional out-of-phase relationship between the fluctuations in the sea-ice extent of these two large seas. In this study, we present 3 day averaged sea-ice extent data obtained from the Nimbus-5 Electrically Scanning Microwave Radiometer (ESMR-5) for the four winters for which ESMR-5 data were available, 1973 through 1976, and document those periods for which there is an out-of-phase relationship in the fluctuations of the ice cover between the Bering Sea and the Sea of Okhotsk. Further, mean sea-level pressure data are also analyzed and compared with the time series of sea-ice extent data to provide a basis for determining possible associations between the episodes of out-of-phase fluctuations and atmospheric circulation patterns. Previous work by Campbell and others (1981) using sea-ice concentrations also derived from ESMR-5 data noted this out-of-phase relationship between the two ice packs in 1973 and 1976. The authors commented that the out-of-phase relationship is “... surprising as these are adjacent seas, and one would assume that they had similar meteorologic environments”. We argue here that the out-of-phase relationship is consistent with large-scale atmospheric circulation patterns, since the two seas span a range of longitude of about 60°, corresponding to a half wavelength of a zonal wave-number 3, and hence are quite susceptible to changes in the amplitude and phase of large-scale atmospheric waves.


2021 ◽  
Author(s):  
Huiling Zou ◽  
Yongqi Gao ◽  
Helene R. Langehaug ◽  
Lei Yu ◽  
Dong Guo

Abstract. The Arctic sea ice has changed largely over the last decades and is expected to change in the future. In this study, we assess sea ice changes in the Pacific sector of the Arctic in an Earth System Model. In winter, the first Empirical Orthogonal Function of sea ice concentration in the Pacific sector of the Arctic based on observations are significantly opposite to that in the Atlantic sector during a period from 1976 to 2004, describing 13.4 % of the total Arctic winter sea ice variability. The similar pattern is also confirmed in the Norwegian Earth System Model (NorESM1-M) (15.8 %). Thermodynamics is found to be vital to winter sea ice variability. In this study, we analyze the relationships between some thermodynamical processes (congelation ice, frazil ice, bottom and top ice melting, and conversion of snow to ice) and sea ice changes in the Bering Sea, based on the NorESM1-M coupled climate model results. All these studied thermodynamical processes can influence the variability in winter sea ice concentration and thickness in the Bering Sea. Considering the mean seasonal cycle over the 30-year time period, conversion of snow to ice contributes about 69 % to the increase in sea ice mass during winter in the Bering Sea, and it is thus the main source to the growth of the winter sea ice in NorESM1-M in the Bering Sea. On the interannual time scales, winter sea ice concentration and thickness variability in the Bering Sea are highly related with the studied thermodynamic processes. Among these thermodynamic processes, congelation ice shows the most important effect on the simulated variability in the Bering Sea, especially in the northeastern part.


Sign in / Sign up

Export Citation Format

Share Document