scholarly journals The role of wave–wave interactions in sudden stratospheric warming formation

2020 ◽  
Vol 1 (1) ◽  
pp. 93-109 ◽  
Author(s):  
Erik A. Lindgren ◽  
Aditi Sheshadri

Abstract. The effects of wave–wave interactions on sudden stratospheric warming formation are investigated using an idealized atmospheric general circulation model, in which tropospheric heating perturbations of zonal wave numbers 1 and 2 are used to produce planetary-scale wave activity. Zonal wave–wave interactions are removed at different vertical extents of the atmosphere in order to examine the sensitivity of stratospheric circulation to local changes in wave–wave interactions. We show that the effects of wave–wave interactions on sudden warming formation, including sudden warming frequencies, are strongly dependent on the wave number of the tropospheric forcing and the vertical levels where wave–wave interactions are removed. Significant changes in sudden warming frequencies are evident when wave–wave interactions are removed even when the lower-stratospheric wave forcing does not change, highlighting the fact that the upper stratosphere is not a passive recipient of wave forcing from below. We find that while wave–wave interactions are required in the troposphere and lower stratosphere to produce displacements when wave number 2 heating is used, both splits and displacements can be produced without wave–wave interactions in the troposphere and lower stratosphere when the model is forced by wave number 1 heating. We suggest that the relative strengths of wave number 1 and 2 vertical wave flux entering the stratosphere largely determine the split and displacement ratios when wave number 2 forcing is used but not wave number 1.

2019 ◽  
Author(s):  
Erik Anders Lindgren ◽  
Aditi Sheshadri

Abstract. The effects of eddy-eddy interactions on sudden stratospheric warming formation are investigated using an idealized atmospheric general circulation model, in which tropospheric heating perturbations of zonal wave numbers 1 and 2 are used to produce planetary scale wave activity. Eddy-eddy interactions are removed at different vertical extents of the atmosphere in order to examine the sensitivity of stratospheric circulation to local changes in eddy-eddy interactions. We show that the effects of eddy-eddy interactions on sudden warming formation, including sudden warming frequencies, are strongly dependent on the wave number of the tropospheric forcing and the vertical levels where eddy-eddy interactions are removed. Significant changes in sudden warming frequencies are evident when eddy-eddy interactions are removed even when the lower stratospheric wave forcing does not change, highlighting the fact that the upper stratosphere is not a passive recipient of wave forcing from below. We find that while eddy-eddy interactions are required in the troposphere and lower stratosphere to produce displacements when wave number 2 heating is used, both splits and displacements can be produced without eddy-eddy interactions in the troposphere and lower stratosphere when the model is forced by wave number 1 heating. We suggest that the relative strengths of wave numbers 1 and 2 vertical wave flux entering the stratosphere largely determine the split and displacement ratios when wave number 2 forcing is used, but not wave number 1.


2016 ◽  
Vol 16 (8) ◽  
pp. 4885-4896 ◽  
Author(s):  
Sheng-Yang Gu ◽  
Han-Li Liu ◽  
Xiankang Dou ◽  
Tao Li

Abstract. The influence of the sudden stratospheric warming (SSW) on a quasi-2-day wave (QTDW) with westward zonal wave number 3 (W3) is investigated using the Thermosphere–Ionosphere–Mesosphere Electrodynamics General Circulation Model (TIME-GCM). The summer easterly jet below 90 km is strengthened during an SSW, which results in a larger refractive index and thus more favorable conditions for the propagation of W3. In the winter hemisphere, the Eliassen–Palm (EP) flux diagnostics indicate that the strong instabilities at middle and high latitudes in the mesopause region are important for the amplification of W3, which is weakened during SSW periods due to the deceleration or even reversal of the winter westerly winds. Nonlinear interactions between the W3 and the wave number 1 stationary planetary wave produce QTDW with westward zonal wave number 2 (W2). The meridional wind perturbations of the W2 peak in the equatorial region, while the zonal wind and temperature components maximize at middle latitudes. The EP flux diagnostics indicate that the W2 is capable of propagating upward in both winter and summer hemispheres, whereas the propagation of W3 is mostly confined to the summer hemisphere. This characteristic is likely due to the fact that the phase speed of W2 is larger, and therefore its waveguide has a broader latitudinal extension. The larger phase speed also makes W2 less vulnerable to dissipation and critical layer filtering by the background wind when propagating upward.


2016 ◽  
Vol 73 (5) ◽  
pp. 1871-1887 ◽  
Author(s):  
Krzysztof Wargan ◽  
Lawrence Coy

Abstract The behavior of the tropopause inversion layer (TIL) during the 2009 sudden stratospheric warming (SSW) is analyzed using NASA’s Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), and short-term simulations with the MERRA-2 general circulation model. Consistent with previous studies, it is found that static stability in a shallow layer above the polar tropopause sharply increases following the SSW, leading to a strengthening of the high-latitude TIL. Simultaneously, the height of the thermal tropopause decreases by around 1 km. Similar behavior is also detected during other major SSW events between the years 2004 and 2013. Using an ensemble of general circulation model forecasts initialized from MERRA-2, it is demonstrated that the primary cause of the strengthening of the TIL is an increased convergence of the vertical component of the stratospheric residual circulation in response to an SSW-induced acceleration of the mean downward motion between 75° and 90°N. In addition, ~6% of the strengthening in 2009 is attributed to an enhanced anticyclonic circulation at the tropopause. A preliminary analysis indicates that during other recent SSW events there was a significant increase in the convergence of the vertical residual wind velocity throughout the middle and lower stratosphere. The static stability increase simulated by the model during the 2009 SSW is 60%–80% of that seen in MERRA-2. The underestimate is traced back to a tendency for the forecasts to underestimate the resolved planetary wave forcing on the stratosphere compared to the reanalysis.


2013 ◽  
Vol 13 (22) ◽  
pp. 11221-11234 ◽  
Author(s):  
F. Arfeuille ◽  
B. P. Luo ◽  
P. Heckendorn ◽  
D. Weisenstein ◽  
J. X. Sheng ◽  
...  

Abstract. In terms of atmospheric impact, the volcanic eruption of Mt. Pinatubo (1991) is the best characterized large eruption on record. We investigate here the model-derived stratospheric warming following the Pinatubo eruption as derived from SAGE II extinction data including recent improvements in the processing algorithm. This method, termed SAGE_4λ, makes use of the four wavelengths (385, 452, 525 and 1024 nm) of the SAGE II data when available, and uses a data-filling procedure in the opacity-induced "gap" regions. Using SAGE_4λ, we derived aerosol size distributions that properly reproduce extinction coefficients also at much longer wavelengths. This provides a good basis for calculating the absorption of terrestrial infrared radiation and the resulting stratospheric heating. However, we also show that the use of this data set in a global chemistry–climate model (CCM) still leads to stronger aerosol-induced stratospheric heating than observed, with temperatures partly even higher than the already too high values found by many models in recent general circulation model (GCM) and CCM intercomparisons. This suggests that the overestimation of the stratospheric warming after the Pinatubo eruption may not be ascribed to an insufficient observational database but instead to using outdated data sets, to deficiencies in the implementation of the forcing data, or to radiative or dynamical model artifacts. Conversely, the SAGE_4λ approach reduces the infrared absorption in the tropical tropopause region, resulting in a significantly better agreement with the post-volcanic temperature record at these altitudes.


2018 ◽  
Vol 31 (6) ◽  
pp. 2337-2344 ◽  
Author(s):  
Amy H. Butler ◽  
Edwin P. Gerber

Various criteria exist for determining the occurrence of a major sudden stratospheric warming (SSW), but the most common is based on the reversal of the climatological westerly zonal-mean zonal winds at 60° latitude and 10 hPa in the winter stratosphere. This definition was established at a time when observations of the stratosphere were sparse. Given greater access to data in the satellite era, a systematic analysis of the optimal parameters of latitude, altitude, and threshold for the wind reversal is now possible. Here, the frequency of SSWs, the strength of the wave forcing associated with the events, changes in stratospheric temperature and zonal winds, and surface impacts are examined as a function of the stratospheric wind reversal parameters. The results provide a methodical assessment of how to best define a standard metric for major SSWs. While the continuum nature of stratospheric variability makes it difficult to identify a decisively optimal threshold, there is a relatively narrow envelope of thresholds that work well—and the original focus at 60° latitude and 10 hPa lies within this window.


2018 ◽  
Vol 31 (6) ◽  
pp. 2399-2415 ◽  
Author(s):  
Wanying Kang ◽  
Eli Tziperman

Sudden stratospheric warming (SSW) events influence the Arctic Oscillation and midlatitude extreme weather. Previous work showed the Arctic stratosphere to be influenced by the Madden–Julian oscillation (MJO) and that the SSW frequency increases with an increase of the MJO amplitude, expected in a warmer climate. It is shown here that the zonal asymmetry in both the background state and forcing plays a dominant role, leading to either enhancement or suppression of SSW events by MJO-like forcing. When applying a circumglobal MJO-like forcing in a dry dynamic core model, the MJO-forced waves can change the general circulation in three ways that affect the total vertical Eliassen–Palm flux in the Arctic stratosphere. First, weakening the zonal asymmetry of the tropospheric midlatitude jet, and therefore preventing the MJO-forced waves from propagating past the jet. Second, weakening the jet amplitude, reducing the waves generated in the midlatitudes, especially stationary waves, and therefore the upward-propagating planetary waves. Third, reducing the Arctic lower-stratospheric refractory index, which prevents waves from upward propagation. These effects stabilize the Arctic vortex and lower the SSW frequency. The longitudinal range to which the MJO-like forcing is limited plays an important role as well, and the strongest SSW frequency increase is seen when the MJO is located where it is observed in current climate. The SSW suppression effects are active when the MJO-like forcing is placed at different longitudinal locations. This study suggests that future trends in both the MJO amplitude and its longitudinal extent are important for predicting the Arctic stratosphere response.


2015 ◽  
Vol 120 (12) ◽  
pp. 10,897-10,912 ◽  
Author(s):  
Yasunobu Miyoshi ◽  
Hitoshi Fujiwara ◽  
Hidekatsu Jin ◽  
Hiroyuki Shinagawa

SOLA ◽  
2016 ◽  
Vol 12A (Special_Edition) ◽  
pp. 13-17 ◽  
Author(s):  
Nawo Eguchi ◽  
Kunihiko Kodera ◽  
Beatriz M. Funatsu ◽  
Hisahiro Takashima ◽  
Rei Ueyama

Sign in / Sign up

Export Citation Format

Share Document