scholarly journals Extreme Atlantic hurricane seasons made more likely by ocean warming

2021 ◽  
Author(s):  
Peter Pfleiderer ◽  
Shruti Nath ◽  
Carl-Friedrich Schleussner

Abstract. Tropical cyclones are among the most damaging and fatal extreme weather events. An increase in Atlantic tropical cyclone activity has been observed, but attribution to global warming remains challenging due to large inter-annual variability and modelling challenges. Here we show that the increase in Atlantic tropical cyclone activity since the 1980s can be robustly ascribed to changes in atmospheric circulation as well as sea surface temperature (SST) increase. Using a novel weather pattern based statistical model, we find that the forced warming trend in Atlantic SSTs over the 1982–2018 period increased the probability of extremely active tropical cyclone seasons by 14 %. Seasonal atmospheric circulation remains the dominant factor explaining both inter-annual variability and the observed increase. Our weather pattern-based statistical decomposition helps to understand the role of atmospheric variability for the Atlantic tropical cyclone activity and provides a new perspective on the role of ocean warming.

2006 ◽  
Vol 33 (19) ◽  
Author(s):  
Amato T. Evan ◽  
Jason Dunion ◽  
Jonathan A. Foley ◽  
Andrew K. Heidinger ◽  
Christopher S. Velden

2014 ◽  
Vol 27 (21) ◽  
pp. 8055-8069 ◽  
Author(s):  
Timothy E. LaRow ◽  
Lydia Stefanova ◽  
Chana Seitz

Abstract The effects on early and late twenty-first-century North Atlantic tropical cyclone statistics resulting from imposing the patterns of maximum/minimum phases of the observed Atlantic multidecadal oscillation (AMO) onto projected sea surface temperatures (SSTs) from two climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are examined using a 100-km resolution global atmospheric model. By imposing the observed maximum positive and negative phases of the AMO onto two CMIP5 SST projections from the representative concentration pathway (RCP) 4.5 scenario, this study places bounds on future North Atlantic tropical cyclone activity during the early (2020–39) and late (2080–99) twenty-first century. Averaging over both time periods and both AMO phases, the mean named tropical cyclones (NTCs) count increases by 35% when compared to simulations using observed SSTs from 1982 to 2009. The positive AMO simulations produce approximately a 68% increase in mean NTC count, while the negative AMO simulations are statistically indistinguishable from the mean NTC count determined from the 1995–2009 simulations—a period of observed positive AMO phase. Examination of the tropical cyclone track densities shows a statistically significant increase in the tracks along the East Coast of the United States in the future simulations compared to the models’ 1982–2009 climate simulations. The increase occurs regardless of AMO phase, although the negative phase produces higher track densities. The maximum wind speeds increase by 6%, in agreement with other climate change studies. Finally, the NTC-related precipitation is found to increase (approximately by 13%) compared to the 1982–2009 simulations.


2018 ◽  
Vol 45 (1) ◽  
pp. 354-362 ◽  
Author(s):  
Wei Zhang ◽  
Gabriel A. Vecchi ◽  
Hiroyuki Murakami ◽  
Gabriele Villarini ◽  
Thomas L. Delworth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document