scholarly journals From standard wind measurements to spectral characterization: turbulence length scale and distribution

2018 ◽  
Author(s):  
Mark Kelly

Abstract. In wind energy, the the effect of turbulence upon turbines is typically simulated using wind ‘input’ time-series based on turbulence spectra. The velocity components’ spectra are characterized by the amplitude of turbulent fluctuations, as well as the length scale corresponding to the dominant eddies. Following the IEC standard, turbine loads calculations commonly involve use of the Mann spectral-tensor model to generate timeseries of the turbulent three-dimensional velocity field. In practice, this spectral-tensor model is employed by adjusting its three parameters: the dominant turbulence length scale LMM (peak length scale of an undistorted isotropic velocity spectrum), the rate of dissipation of turbulent kinetic energy ε, and the turbulent eddy-lifetime (anisotropy) parameter Γ. Deviation from ‘ideal’ neutral sheared turbulence – i.e. for non-zero heat flux and/or heights above the surface layer – is, in effect, captured by setting these parameters according to observations. Previously, site-specific {LMM, ε, Γ} were obtainable through fits to measured three-dimensional velocity component spectra recorded with sample rates resolving the inertial range of turbulence (>~ 1 Hz); however, this is not feasible in most industrial wind energy projects, which lack multi-dimensional sonic anemometers and employ loggers that record measurements averaged over intervals of minutes. Here a form is derived for the shear dependence implied by the eddy-lifetime prescription within the Mann spectral-tensor model, which leads to derivation of useful forms of the turbulence length scale. Subsequently it is shown how LMM can be calculated from commonly-measured site-specific atmospheric parameters, namely mean wind shear (dU/dz) and standard deviation of streamwise fluctuations (σu). The derived LMM can be obtained from standard (10-minute average) cup anemometer measurements, in contrast with forms based on friction velocity. The new form is tested across several different conditions and sites, and is found to be more robust and accurate than estimates relying on friction velocity observations. Assumptions behind the derivations are also tested, giving new insight into rapid-distortion theory and eddy-lifetime modelling – and application – within the atmospheric boundary layer. The work herein further shows that distributions of turbulence length scale, obtained using the new form with typical measurements, compare well with distributions P(LMM) obtained by fitting to spectra from research-grade sonic anemometer measurements for the various flow regimes and sites analyzed. The new form is thus motivated by and amenable to site-specific probabilistic loads characterization.

2018 ◽  
Vol 3 (2) ◽  
pp. 533-543 ◽  
Author(s):  
Mark Kelly

Abstract. In wind energy, the effect of turbulence upon turbines is typically simulated using wind “input” time series based on turbulence spectra. The velocity components' spectra are characterized by the amplitude of turbulent fluctuations, as well as the length scale corresponding to the dominant eddies. Following the IEC standard, turbine load calculations commonly involve use of the Mann spectral-tensor model to generate time series of the turbulent three-dimensional velocity field. In practice, this spectral-tensor model is employed by adjusting its three parameters: the dominant turbulence length scale LMM (peak length scale of an undistorted isotropic velocity spectrum), the rate of dissipation of turbulent kinetic energy ε, and the turbulent eddy-lifetime (anisotropy) parameter Γ. Deviation from “ideal” neutral sheared turbulence – i.e., for non-zero heat flux and/or heights above the surface layer – is, in effect, captured by setting these parameters according to observations. Previously, site-specific {LMM,ε,Γ} values were obtainable through fits to measured three-dimensional velocity component spectra recorded with sample rates resolving the inertial range of turbulence (≳1 Hz); however, this is not feasible in most industrial wind energy projects, which lack multi-dimensional sonic anemometers and employ loggers that record measurements averaged over intervals of minutes. Here a form is derived for the shear dependence implied by the eddy-lifetime prescription within the Mann spectral-tensor model, which leads to derivation of useful forms of the turbulence length scale. Subsequently it is shown how LMM can be calculated from commonly measured site-specific atmospheric parameters, namely mean wind shear (dU∕dz) and standard deviation of streamwise fluctuations (σu). The derived LMM can be obtained from standard (10 min average) cup anemometer measurements, in contrast with an earlier form based on friction velocity. The new form is tested across several different conditions and sites, and it is found to be more robust and accurate than estimates relying on friction velocity observations. Assumptions behind the derivations are also tested, giving new insight into rapid-distortion theory and eddy-lifetime modeling – and application – within the atmospheric boundary layer. The work herein further shows that distributions of turbulence length scale, obtained using the new form with typical measurements, compare well with distributions P(LMM) obtained by fitting to spectra from research-grade sonic anemometer measurements for the various flow regimes and sites analyzed. The new form is thus motivated by and amenable to site-specific probabilistic loads characterization.


Author(s):  
Y.-H. Ho ◽  
B. Lakshminarayana

A steady, three-dimensional Navier-Stokes solver which utilizes a pressure-based technique for incompressible flows is used to simulate the three-dimensional flow field in a turbine cascade. A new feature of the numerical scheme is the implementation of a second-order plus fourth-order artificial dissipation formulation, which provides a precise control of the numerical dissipation. A low-Reynolds-number form of a two-equation turbulence model is used to account for the turbulence effects. Comparison between the numerical predictions and the experimental data indicates that the numerical model is able to capture most of the complex flow phenomena in the endwall region of a turbine cascade, except the high gradient region in the secondary vortex core. The effects of inlet turbulence intensity and turbulence length scale on secondary vortices, total pressure loss, and turbulence kinetic energy inside the passage are presented and interpreted. It is found that higher turbulence intensity energizes the vortical motions and tends to move the passage vortex away from the endwall. With a larger turbulence length scale the secondary flow inside the passage is reduced. However, the total pressure loss increases due to higher turbulence kinetic energy production.


1996 ◽  
Vol 118 (2) ◽  
pp. 250-261 ◽  
Author(s):  
Y.-H. Ho ◽  
B. Lakshminarayana

A steady, three-dimensional Navier–Stokes solver that utilizes a pressure-based technique for incompressible flows is used to simulate the three-dimensional flow field in a turbine cascade. A new feature of the numerical scheme is the implementation of a second-order plus fourth-order artificial dissipation formulation, which provides a precise control of the numerical dissipation. A low-Reynolds-number form of a two-equation turbulence model is used to account for the turbulence effects. Comparison between the numerical predictions and the experimental data indicates that the numerical model is able to capture most of the complex flow phenomena in the endwall region of a turbine cascade, except the high gradient region in the secondary vortex core. The effects of inlet turbulence intensity and turbulence length scale on secondary vortices, total pressure loss, and turbulence kinetic energy inside the passage are presented and interpreted. It is found that higher turbulence intensity energizes the vortical motions and tends to move the passage vortex away from the endwall. With a larger turbulence length scale, the secondary flow inside the passage is reduced. However, the total pressure loss increases due to higher turbulence kinetic energy production.


1992 ◽  
Vol 114 (4) ◽  
pp. 790-795 ◽  
Author(s):  
D. L. Rhode ◽  
R. I. Hibbs

A previously validated finite difference computer code was revised to allow the specification of upstream and downstream reservoir conditions as boundary conditions, whereas the domain extends only from the seal inlet to outlet plane. As a result of this special revision, the required execution CPU time is approximately only one hour on a VAX 8650 computer for three-cavity, straight-through seals. A parametric study focusing on tooth thickness showed that streamwise swirl development was only slightly higher for the thickest tooth. Further, for straight-through seals it was found that leakage is almost independent of tooth thickness and that the second cavity yields a definite increase in turbulence energy and turbulence length scale over the first cavity.


2010 ◽  
Vol 133 (1) ◽  
Author(s):  
J. S. Carullo ◽  
S. Nasir ◽  
R. D. Cress ◽  
W. F. Ng ◽  
K. A. Thole ◽  
...  

This paper experimentally investigates the effect of high freestream turbulence intensity, turbulence length scale, and exit Reynolds number on the surface heat transfer distribution of a turbine blade at realistic engine Mach numbers. Passive turbulence grids were used to generate freestream turbulence levels of 2%, 12%, and 14% at the cascade inlet. The turbulence grids produced length scales normalized by the blade pitches of 0.02, 0.26, and 0.41, respectively. Surface heat transfer measurements were made at the midspan of the blade using thin film gauges. Experiments were performed at the exit Mach numbers of 0.55, 0.78, and 1.03, which represent flow conditions below, near, and above nominal conditions. The exit Mach numbers tested correspond to exit Reynolds numbers of 6×105, 8×105, and 11×105, based on true chord. The experimental results showed that the high freestream turbulence augmented the heat transfer on both the pressure and suction sides of the blade as compared with the low freestream turbulence case. At nominal conditions, exit Mach 0.78, average heat transfer augmentations of 23% and 35% were observed on the pressure side and suction side of the blade, respectively.


2016 ◽  
Vol 3 (1) ◽  
pp. 40
Author(s):  
Uriel Goldberg

A turbulence closure based on transport equations for the square-root of the kinetic energy of turbulence, q=k1/2 and the length-scale, , is proposed and tested. The model is topography parameter free (no wall distance needed), uses local wall proximity indicators instead, and is meant to be applicable to both wall-bounded and free shear flows. Solving directly for the turbulence length-scale, invoking Dirichlet boundary conditions for both q and  and the fact that q varies linearly across the viscous sublayer contribute to reduced sensitivity of this model to near-wall grid concentration (as long as the sublayer is resolved) and to less numerical stiffness, hence faster convergence. A variable Cm parameter is featured in this model to account for non-simple shear where mean strain and vorticity rates are different. Several cases, covering a wide variety of flows, are presented to demonstrate the model’s performance. Fluids engineers whose work involves complex 3D topologies, particularly with non-stationary grids which require re-computing wall distance arrays at each time-step (a heavy demand on time and budget) may appreciate the fact that no distance arrays are needed for the q-  model.


1995 ◽  
Vol 117 (3) ◽  
pp. 401-406 ◽  
Author(s):  
K. Dullenkopf ◽  
R. E. Mayle

The effect of length scale in free-stream turbulence is considered for heat transfer in laminar boundary layers. A model is proposed that accounts for an “effective” intensity of turbulence based on a dominant frequency for a laminar boundary layer. Assuming a standard turbulence spectral distribution, a new turbulence parameter that accounts for both turbulence level and length scale is obtained and used to correlate heat transfer data for laminar stagnation flows. The result indicates that the heat transfer for these flows is linearly dependent on the “effective” free-stream turbulence intensity.


Sign in / Sign up

Export Citation Format

Share Document