scholarly journals Assessing spacing impact on coherent features in a wind turbine array boundary layer

2018 ◽  
Vol 3 (1) ◽  
pp. 43-56 ◽  
Author(s):  
Naseem Ali ◽  
Nicholas Hamilton ◽  
Dominic DeLucia ◽  
Raúl Bayoán Cal

Abstract. As wind farms become larger, the spacing between turbines becomes a significant design consideration that can impose serious economic constraints. To investigate the turbulent flow structures in a 4 × 3 Cartesian wind turbine array boundary layer (WTABL), a wind tunnel experiment was carried out parameterizing the streamwise and spanwise wind turbine spacing. Four cases are chosen spacing turbines by 6 or 3D in the streamwise direction, and 3 or 1.5D in the spanwise direction, where D = 12 cm is the rotor diameter. Data are obtained experimentally using stereo particle image velocimetry. Mean streamwise velocity showed maximum values upstream of the turbine with the spacing of 6 and 3D in the streamwise and spanwise direction, respectively. Fixing the spanwise turbine spacing to 3D, variations in the streamwise spacing influence the turbulent flow structure and the power available to following wind turbines. Quantitative comparisons are made through spatial averaging, shifting measurement data and interpolating to account for the full range between devices to obtain data independent of array spacing. The largest averaged Reynolds stress is seen in cases with spacing of 3D × 3D. Snapshot proper orthogonal decomposition (POD) was employed to identify the flow structures based on the turbulence kinetic energy content. The maximum turbulence kinetic energy content in the first POD mode is seen for turbine spacing of 6D × 1.5D. The flow upstream of each wind turbine converges faster than the flow downstream according to accumulation of turbulence kinetic energy by POD modes, regardless of spacing. The streamwise-averaged profile of the Reynolds stress is reconstructed using a specific number of modes for each case; the case of 6D × 1.5D spacing shows the fastest reconstruction to compare the rate of reconstruction of statistical profiles. Intermediate modes are also used to reconstruct the averaged profile and show that the intermediate scales are responsible for features seen in the original profile. The variation in streamwise and spanwise spacing leads to changes in the background structure of the turbulence, where the color map based on barycentric map and Reynolds stress anisotropy tensor provides an alternate perspective on the nature of the perturbations within the wind turbine array. The impact of the streamwise and spanwise spacings on power produced is quantified, where the maximum production corresponds with the case of greatest turbine spacing.

2017 ◽  
Author(s):  
Naseem Ali ◽  
Nicholas Hamilton ◽  
Raul Cal

Abstract. As wind farms become larger, the spacing between turbines becomes a significant design element that imposes serious economic constraints. Effects of turbine spacing on the power produced and flow structure are crucial for future development of wind energy. To investigate the turbulent flow structures in a 4 × 3 Cartesian wind turbine array, a wind tunnel experiment was carried out parameterizing the streamwise and spanwise wind turbine spacing. Four cases were chosen spacing turbines by 6 diameters (D) or 3D in the streamwise, and 3D or 1.5D in the spanwise direction. Data were obtained experimentally using stereo particle-image velocimetry. Mean streamwise velocity showed maximum values upstream of the turbine with the spacing of 6D and 3D, in the streamwise and spanwise direction, respectively. Fixing the spanwise turbine spacing to 3D, variations in the streamwise spacing influence the turbulent flow structure and the power available to following wind turbines. Quantitative comparisons were made through spatial averaging, shifting measurement data and interpolating to account for the full range between devices to obtain data independent of array spacing. The largest averaged Reynolds stress is seen in cases with spacing of 3D and 3D, in the streamwise and spanwise direction, respectively. Snapshot proper orthogonal decomposition was employed to identify the flow structures based on the turbulence kinetic energy content. The maximum turbulence kinetic energy content in the first POD mode compared with other cases is seen for turbine spacing of 6D × 1.5D. The flow upstream of each wind turbine converges faster than the flow downstream according to accumulation of turbulence kinetic energy by POD modes, regardless of spacing. The streamwise-averaged profile of the Reynolds stress is reconstructed using a specific number of modes for each case; the case of 6D × 1.5D spacing shows the fastest reconstruction. Intermediate modes are also used to reconstruct the averaged profile and show that the intermediate scales are responsible for features seen in the original profile. The variation in streamwise and spanwis spacing leads to changing the background structure of the turbulence, where the color map based on barycentric map and anisotropy stress tensor provides a new perspective on the nature of the perturbations within the wind turbine array. The impact of the streamwise and spanwise spacings on power produced is quantified, where the maximum production corresponds with the case of greatest turbine spacing.


2021 ◽  
Author(s):  
Mukesh Kumar ◽  
Tirtha Banerjee ◽  
Alex Jonko ◽  
Jeff Mirocha ◽  
William Lassman

<p>Mesoscale-to-Large Eddy Simulation (LES) grid nesting is an important tool for many atmospheric model applications, ranging from wind energy to wildfire spread studies. Different techniques are used in such applications to accelerate the development of turbulence in the LES domain. Here, we explore the impact of a simple and computationally efficient Stochastic Cell Perturbation method (SCPM) to accelerate the generation of turbulence in the Weather Research and Forecasting (WRF) LES model on the Turbulence Kinetic Energy (TKE) budget. In a convective boundary layer, we study the variation of TKE budget terms under the initial conditions of the Scaled Wind Farm Technology (SWiFT) facility located in West Texas. In this study, WRF LES is used with a horizontal grid resolution of 12 m, and is one-way nested within an idealized mesoscale domain. It is crucial to understand how forced perturbation shifts the balance between the terms of the TKE budget. Here, we quantify the shear production, and buoyant production in an unstable case. Since additional production terms are introduced in the SCPM method, we investigate the dissipation term of TKE. In addition, we also study the generation of turbulent transport. Generally, it integrates over height to null in a planar homogeneous case without subsidence, indicating it is positive over some heights and negative over other heights. Furthermore, we also study the variation of the TKE transport term after extending the random perturbation up to a certain height. The findings of this study will provide a better understanding of the contribution of different budget terms in a forced LES simulation.</p>


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Minghan Chu ◽  
Donald J. Bergstrom

Abstract The present paper reports a numerical study of fully developed turbulent flow over a flat plate with a step change from a smooth to a rough surface. The Reynolds number based on momentum thickness for the smooth flow was Reθ=5950. The focus of the study was to investigate the capability of the Reynolds-averaged Navier–Stokes (RANS) equations to predict the internal boundary layer (IBL) created by the flow configuration. The numerical solution used a two-layer k−ε model to implement the effects of surface roughness on the turbulence and mean flow fields via the use of a hydrodynamic roughness length y0. The prediction for the mean velocity field revealed a development zone immediately downstream of the step in which the mean velocity profile included a lower region affected by the surface roughness below and an upper region with the characteristics of the smooth-wall boundary layer above. In this zone, both the turbulence kinetic energy and Reynolds shear stress profiles were characterized by a significant reduction in magnitude in the outer region of the flow that is unaffected by the rough surface. The turbulence kinetic energy profile was used to estimate the thickness of the IBL, and the resulting growth rate closely matched the experimental results. As such, the IBL is a promising test case for assessing the ability of RANS models to predict the discrete roughness configurations often encountered in industrial and environmental applications.


2020 ◽  
Vol 59 (9) ◽  
pp. 1481-1501 ◽  
Author(s):  
Yujue Liu ◽  
Yubao Liu ◽  
Domingo Muñoz-Esparza ◽  
Fei Hu ◽  
Chao Yan ◽  
...  

AbstractA multiscale modeling study of a real case has been conducted to explore the capability of the large-eddy simulation version of the Weather Research and Forecasting Model (WRF-LES) over Xiaohaituo Mountain (a game zone for the Beijing, China, 2022 Winter Olympic Games). In comparing WRF-LES results with observations collected during the Mountain Terrain Atmospheric Observations and Modeling (MOUNTAOM) field campaign, it is found that at 37-m resolution with LES settings, the model can reasonably capture both large-scale events and microscale atmospheric circulation characteristics. Employing the Shuttle Radar Topography Mission 1 arc s dataset (SRTM1; ~30 m) high-resolution topographic dataset instead of the traditional USGS_30s (~900 m) dataset effectively improves the model capability for reproducing fluctuations and turbulent features of surface winds. Five sensitivity experiments are conducted to investigate the impact of different PBL treatments, including YSU/Shin and Hong (SH) PBL schemes and LES with 1.5-order turbulence kinetic energy closure model (1.5TKE), Smagorinsky (SMAG), and nonlinear backscatter and anisotropy (NBA) subgrid-scale (SGS) stress models. In this case, at gray-zone scales, differences between YSU and SH are negligible. LES outperform two PBL schemes that generate smaller turbulence kinetic energy and increase the model errors for mean wind speed, energy spectra, and probability density functions of velocity. Another key finding is that wind field features in the boundary layer over complex terrain are more sensitive to the choice of SGS models than above the boundary layer. With the increase of model resolution, the effects of the SGS model become more significant, especially for the statistical characteristics of turbulence. Among these three SGS models, NBA has the best performance. Overall, this study demonstrates that WRF-LES is a promising tool for simulating real weather flows over complex terrain.


2020 ◽  
Vol 77 (5) ◽  
pp. 1661-1681
Author(s):  
Qingfang Jiang ◽  
Qing Wang ◽  
Shouping Wang ◽  
Saša Gaberšek

Abstract The characteristics of a convective internal boundary layer (CIBL) documented offshore during the East Coast phase of the Coupled Air–Sea Processes and Electromagnetic Ducting Research (CASPER-EAST) field campaign has been examined using field observations, a coupled mesoscale model (i.e., Navy’s COAMPS) simulation, and a couple of surface-layer-resolving large-eddy simulations (LESs). The Lagrangian modeling approach has been adopted with the LES domain being advected from a cool and rough land surface to a warmer and smoother sea surface by the mean offshore winds in the CIBL. The surface fluxes from the LES control run are in reasonable agreement with field observations, and the general CIBL characteristics are consistent with previous studies. According to the LESs, in the nearshore adjustment zone (i.e., fetch < 8 km), the low-level winds and surface friction velocity increase rapidly, and the mean wind profile and vertical velocity skewness in the surface layer deviate substantially from the Monin–Obukhov similarity theory (MOST) scaling. Farther offshore, the nondimensional vertical wind shear and scalar gradients and higher-order moments are consistent with the MOST scaling. An elevated turbulent layer is present immediately below the CIBL top, associated with the vertical wind shear across the CIBL top inversion. Episodic shear instability events occur with a time scale between 10 and 30 min, leading to the formation of elevated maxima in turbulence kinetic energy and momentum fluxes. During these events, the turbulence kinetic energy production exceeds the dissipation, suggesting that the CIBL remains in nonequilibrium.


2018 ◽  
Vol 168 (1) ◽  
pp. 1-27 ◽  
Author(s):  
Brigitta Goger ◽  
Mathias W. Rotach ◽  
Alexander Gohm ◽  
Oliver Fuhrer ◽  
Ivana Stiperski ◽  
...  

Author(s):  
B. Song ◽  
R. S. Amano ◽  
S. Sitarama ◽  
B. Lin

Numerical study on a three-dimensional turbulent flow in a turbine-rotor passage is presented in this paper. The standard k-ε model was used for the first phase of the turbulence computations. The computations were further extended by employing the full Reynolds-stress closure model (RSM). The computational results obtained using these models were compared in order to investigate the turbulence effect in the near-wall region. The governing equations in a generalized curvilinear coordinate system are discretized by using the SIMPLEC method with non-staggered grids. The oscillations in pressure and velocity due to non-staggered grids are eliminated by using a special interpolation method. The predicted midspan pressure coefficients using the k-ε model and the RSM are compared with the experimental data. It was shown that the present results obtained by using either model are fairly reasonable. Computations were then extended to cover the entire blade-to-blade flow passage, and the three-dimensional effects on pressure and turbulence kinetic energy were evaluated. It was observed that the two turbulence models predict different results for the turbulence kinetic energy. This variation was identified as being related to some non-isotropic turbulence occurring near the blade surface due to the severe acceleration of the flow. It was thus proven that the models based on the RSM give more realistic predictions for highly turbulent cascade flow computations than a Boussinesq viscosity model.


2019 ◽  
Vol 1 (2) ◽  
pp. 265-282
Author(s):  
Marta Puzdrowska ◽  
Tomasz Heese

The paper presents an analysis the spatial distribution of turbulent kinetic energy (TKE) for bolt fishways, including the impact of additional spillway slots and fixed channel development. The research was done for two models, each containing a different arrangement of slots. The presented results of research for bolt fishways were obtained as an effect of laboratory tests. The measurements were done for three components of instant flow velocity magnitude (speed). Analysis of the results was done for a 3D flow structure using Matlab software. In the case of bolt fishways, significant differences were noted for the method of velocity and TKE distribution, in reference to research comprising channels with biological development. It was stated that a reason for this is the flexible development of the channel. The occurrence of extreme TKE values in the chamber (pool) is strictly associated with the characteristics of interaction zones between various flow structures. It was also stated that the lower the parapet of the slot’s spillway shelf is in the fishway’s partition, the higher TKE could be expected just downstream of the section. These establishments may be important for the designing process in the case of fish passes of various types of construction.


2012 ◽  
Vol 4 (6) ◽  
pp. 063105 ◽  
Author(s):  
Nicholas Hamilton ◽  
Hyung Suk Kang ◽  
Charles Meneveau ◽  
Raúl Bayoán Cal

Sign in / Sign up

Export Citation Format

Share Document