scholarly journals Turbulent Kinetic Energy in Bolt Fishway

2019 ◽  
Vol 1 (2) ◽  
pp. 265-282
Author(s):  
Marta Puzdrowska ◽  
Tomasz Heese

The paper presents an analysis the spatial distribution of turbulent kinetic energy (TKE) for bolt fishways, including the impact of additional spillway slots and fixed channel development. The research was done for two models, each containing a different arrangement of slots. The presented results of research for bolt fishways were obtained as an effect of laboratory tests. The measurements were done for three components of instant flow velocity magnitude (speed). Analysis of the results was done for a 3D flow structure using Matlab software. In the case of bolt fishways, significant differences were noted for the method of velocity and TKE distribution, in reference to research comprising channels with biological development. It was stated that a reason for this is the flexible development of the channel. The occurrence of extreme TKE values in the chamber (pool) is strictly associated with the characteristics of interaction zones between various flow structures. It was also stated that the lower the parapet of the slot’s spillway shelf is in the fishway’s partition, the higher TKE could be expected just downstream of the section. These establishments may be important for the designing process in the case of fish passes of various types of construction.

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4136
Author(s):  
Clemens Gößnitzer ◽  
Shawn Givler

Cycle-to-cycle variations (CCV) in spark-ignited (SI) engines impose performance limitations and in the extreme limit can lead to very strong, potentially damaging cycles. Thus, CCV force sub-optimal engine operating conditions. A deeper understanding of CCV is key to enabling control strategies, improving engine design and reducing the negative impact of CCV on engine operation. This paper presents a new simulation strategy which allows investigation of the impact of individual physical quantities (e.g., flow field or turbulence quantities) on CCV separately. As a first step, multi-cycle unsteady Reynolds-averaged Navier–Stokes (uRANS) computational fluid dynamics (CFD) simulations of a spark-ignited natural gas engine are performed. For each cycle, simulation results just prior to each spark timing are taken. Next, simulation results from different cycles are combined: one quantity, e.g., the flow field, is extracted from a snapshot of one given cycle, and all other quantities are taken from a snapshot from a different cycle. Such a combination yields a new snapshot. With the combined snapshot, the simulation is continued until the end of combustion. The results obtained with combined snapshots show that the velocity field seems to have the highest impact on CCV. Turbulence intensity, quantified by the turbulent kinetic energy and turbulent kinetic energy dissipation rate, has a similar value for all snapshots. Thus, their impact on CCV is small compared to the flow field. This novel methodology is very flexible and allows investigation of the sources of CCV which have been difficult to investigate in the past.


2019 ◽  
Vol 866 ◽  
pp. 897-928 ◽  
Author(s):  
P. Orlandi

Data available in the literature from direct numerical simulations of two-dimensional turbulent channels by Lee & Moser (J. Fluid Mech., vol. 774, 2015, pp. 395–415), Bernardini et al. (J. Fluid Mech., 742, 2014, pp. 171–191), Yamamoto & Tsuji (Phys. Rev. Fluids, vol. 3, 2018, 012062) and Orlandi et al. (J. Fluid Mech., 770, 2015, pp. 424–441) in a large range of Reynolds number have been used to find that $S^{\ast }$ the ratio between the eddy turnover time ($q^{2}/\unicode[STIX]{x1D716}$, with $q^{2}$ being twice the turbulent kinetic energy and $\unicode[STIX]{x1D716}$ the isotropic rate of dissipation) and the time scale of the mean deformation ($1/S$), scales very well with the Reynolds number in the wall region. The good scaling is due to the eddy turnover time, although the turbulent kinetic energy and the rate of isotropic dissipation show a Reynolds dependence near the wall; $S^{\ast }$, as well as $-\langle Q\rangle =\langle s_{ij}s_{ji}\rangle -\langle \unicode[STIX]{x1D714}_{i}\unicode[STIX]{x1D714}_{i}/2\rangle$ are linked to the flow structures, and also the latter quantity presents a good scaling near the wall. It has been found that the maximum of turbulent kinetic energy production $P_{k}$ occurs in the layer with $-\langle Q\rangle \approx 0$, that is, where the unstable sheet-like structures roll-up to become rods. The decomposition of $P_{k}$ in the contribution of elongational and compressive strain demonstrates that the two contributions present a good scaling. However, the good scaling holds when the wall and the outer structures are separated. The same statistics have been evaluated by direct simulations of turbulent flows in the presence of different types of corrugations on both walls. The flow physics in the layer near the plane of the crests is strongly linked to the shape of the surface and it has been demonstrated that the $u_{2}$ (normal to the wall) fluctuations are responsible for the modification of the flow structures, for the increase of the resistance and of the turbulent kinetic energy production.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 691
Author(s):  
Peng Lin ◽  
Yan Jin ◽  
Fu Yang ◽  
Ziyu Liu ◽  
Rundong Jing ◽  
...  

In continuous casting, the nozzle position may deviate from the center under actual operating conditions, which may cause periodic fluctuation of the steel-slag interface and easily lead to slag entrapment and gas absorption. Swirling nozzles can reduce these negative effects. A mathematical simulation method based on a round mold of steel components with a 600 mm diameter is applied to study the flow field of molten steel in a mold. The swirling nozzle is optimized through the establishment of a fluid dynamics model. Meanwhile, a 1:2 hydraulic model is established for validation experiments. The results show that, when the submerged entry nozzle (SEN) is eccentric in the mold, it results in serious bias flow, increasing the drift index in the mold up to 0.46 at the eccentric distance of 50 mm. The impact depth of liquid steel and turbulent kinetic energy can be decreased by increasing the rotation angle of the nozzle. The nozzle with one bottom hole, which significantly decreases the bottom pressure and turbulent kinetic energy, greatly weakens the scour on nozzle and surface fluctuation. In the eccentric casting condition, using the optimized swirling nozzle that employs a 5-fractional structure, in which the rotation angle of 4 side holes is 30° and there is one bottom outlet, can effectively restrain bias flow and reduce the drift index to 0.28, a decline of more than 39%.


Author(s):  
Alex Rybchuk ◽  
Caroline B. Alden ◽  
Julie K. Lundquist ◽  
Gregory B. Rieker

AbstractIn recent years, new measurement systems have been deployed to monitor and quantify methane emissions from the natural gas sector. Large-eddy simulation (LES) has complemented measurement campaigns by serving as a controlled environment in which to study plume dynamics and sampling strategies. However, with few comparisons to controlled-release experiments, the accuracy of LES for modeling natural gas emissions is poorly characterized. In this paper, we evaluate LES from the Weather Research and Forecasting (WRF) model against Project Prairie Grass campaign measurements and surface layer similarity theory. Using WRF-LES, we simulate continuous emissions from 30 near-surface trace gas sources in two stability regimes: strong and weak convection. We examine the impact of grid resolutions ranging from 6.25 m to 52 m in the horizontal dimension on model results. We evaluate performance in a statistical framework, calculating fractional bias and conducting Welch’s t-tests. WRF-LES accurately simulates observed surface concentrations at 100 m and beyond under strong convection; simulated concentrations pass t-tests in this region irrespective of grid resolution. However, in weakly convective conditions with strong winds, WRF-LES substantially overpredicts concentrations – the magnitude of fractional bias often exceeds 30%, and all but one C-test fails. The good performance of WRF-LES under strong convection correlates with agreement with local free convection theory and a minimal amount of parameterized turbulent kinetic energy. The poor performance under weak convection corresponds to misalignment with Monin-Obukhov similarity theory and a significant amount of parameterized turbulent kinetic energy.


2021 ◽  
Vol 14 (1) ◽  
pp. 392
Author(s):  
Md. Amir Khan ◽  
Nayan Sharma ◽  
Jaan Pu ◽  
Faisal M. Alfaisal ◽  
Shamshad Alam ◽  
...  

Researchers have recognized that the successive growth of mid-channel bar deposits can be entertained as the raison d’être for the initiation of the braiding process, which is closely interlinked with the growth, decay, and vertical distribution of fluvial turbulent kinetic energy (TKE). Thus, focused analysis on the underlying mechanics of turbulent flow structures in the proximity of a bar deposit occurring in the middle of the channel can afford crucial scientific clues for insight into the initiating fluvial processes that give rise to braiding. In the study reported herein, a physical model of a mid-channel bar is constructed in an experimental flume to analyze the turbulence parameters in a region close to the bar. Notably, the flow velocity plays an important role in understanding the flow behavior in the scour-hole location in the upstream flow divergence zone as well as near the downstream zone of flow convergence in a mid-channel bar. Therefore, the fluctuating components of turbulent flow velocity are herein discussed and analyzed for the regions located close to the bar. In the present study, the impact of the mid-channel bar, as well as its growth in turbulent flow, on higher-order velocity fluctuation moments are investigated. For near-bed locations, the results show the dominance of ejection events in upstream zones and the dominance of sweep events at locations downstream of the mid-channel bar. In scour-hole sections, the negative value of the stream-wise flux of turbulent kinetic energy and the positive value of the vertical flux of turbulent kinetic energy indicate energy transport in downward and forward directions, respectively. The downward and forward energy transport processes lead to scouring at these locations. The maximum turbulent production rate occurs in the wake region of the bar. The high rate of turbulence production has occurred in that region, which can be ascribed to the process of shedding turbulent vortices. The results show that the impact of the presence of the bar is mainly restricted to the lower layers of flow. The turbulent dissipation rate monotonically decreases with an increase in the vertical distance from the bed. The turbulent production rate first increases and then decreases with successive increases in the vertical distance from the bed. The paper concludes with suggestions for the future potential use of the present research for the practical purpose of examining braid bar occurrences in alluvial rivers to develop an appropriate response through training measures.


Fluids ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 64 ◽  
Author(s):  
Marta Puzdrowska ◽  
Tomasz Heese

Turbulent kinetic energy (TKE) and its distribution and volume remain—with the exception of flow velocity—the most important cause of the low efficiency of fish passes. Thus, it is important to define the reasons and mechanisms that explain the distribution of characteristic features of this parameter, as presented in the paper. This publication presents the spatial distribution of TKE for two models of bolt-type fishways. The paper shows details related to characteristic features of TKE distribution and intensity scale in a bolt fishway. The presented research results for the bolt fishway were obtained from laboratory tests using a physical model. Measurements were taken of three temporary components of flow velocity in the indicated measurement sections. It was established that differences in the TKE volume and distribution are a consequence of the state of the stream that leaves the slot’s section or the orifice’s section. This state is defined by the determination of the stream’s potential. A low potential results in high TKE values in the area of the main flow. Thus, considering various structural features of fish passes, one can assert that the potential remains a characteristic feature attributable to a particular type of facility.


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 697 ◽  
Author(s):  
Jose-Luis Santiago ◽  
Riccardo Buccolieri ◽  
Esther Rivas ◽  
Beatriz Sanchez ◽  
Alberto Martilli ◽  
...  

This paper is devoted to the quantification of changes in ventilation of a real neighborhood located in Pamplona, Spain, due to the presence of street trees Pollutant dispersion in this urban zone was previously studied by means of computational fluid dynamic (CFD) simulations. In the present work, that research is extended to analyze the ventilation in the whole neighborhood and in a tree-free street. Several scenarios are investigated including new trees in the tree-free street, and different leaf area density (LAD) in the whole neighborhood. Changes between the scenarios are evaluated through changes in average concentration, wind speed, flow rates and total pollutant fluxes. Additionally, wind flow patterns and the vertical profiles of flow properties (e.g., wind velocity, turbulent kinetic energy) and concentration, horizontally-averaged over one particular street, are analyzed. The approach-flow direction is almost perpendicular to the street under study (prevailing wind direction is only deviated 4º from the perpendicular direction). For these conditions, as LAD increases, average concentration in the whole neighborhood increases due to the decrease of wind speed. On the other hand, the inclusion of trees in the street produces an increase of averaged pollutant concentration only within this street, in particular for the scenario with the highest LAD value. In fact, the new trees in the street analyzed with the highest LAD value notably change the ventilation producing an increase of total pollutant fluxes inward the street. Additionally, pollutant dispersion within the street is also influenced by the reduction of the wind velocity along the street axis and the decrease of turbulent kinetic energy within the vegetation canopy caused by the new trees. Therefore, the inclusion of new trees in a tree-free street should be done by considering ventilation changes and traffic emissions should be consequently controlled in order to keep pollutant concentration within healthy levels.


2014 ◽  
Vol 1023 ◽  
pp. 150-153
Author(s):  
Xin Chen ◽  
Wu Zhang ◽  
Yuan Qiang Wu ◽  
Huai Yu Wang ◽  
Hou Yu Ning

This paper aims to study the impact of the rearview mirror shape on aerodynamic performance. Two typical rearview mirrors were selected to conduct the wind tunnel test, and the test result showed that the noise on the rear monitoring point of the mirror 1 was lower than that of the mirror 2. This paper then conducted simulating computation through computational fluid mechanics (CFD) theory and Fluent software, and obtained the size of the monitoring points of the two typical rearview mirrors, static pressure chart, motion pattern and turbulent kinetic energy distribution diagram, and sequentially analyzed the reason for more noise of the mirror 2. The study shows that different mirror cover structures have a great influence on the flow line flowing through the rearview mirror cover, and significantly influenced the rear flow field of the rearview mirror and the static pressure and the turbulent kinetic energy of the monitoring point.


2007 ◽  
Vol 22 (5) ◽  
pp. 950-966 ◽  
Author(s):  
Yi Jin ◽  
William T. Thompson ◽  
Shouping Wang ◽  
Chi-Sann Liou

Abstract The impact of dissipative heating on tropical cyclone (TC) intensity forecasts is investigated using the U.S. Navy’s operational mesoscale model (the Coupled Ocean/Atmosphere Mesoscale Prediction System). A physically consistent method of including dissipative heating is developed based on turbulent kinetic energy dissipation to ensure energy conservation. Mean absolute forecast errors of track and surface maximum winds are calculated for eighteen 48-h simulations of 10 selected TC cases over both the Atlantic basin and the northwest Pacific. Simulation results suggest that the inclusion of dissipative heating improves surface maximum wind forecasts by 10%–20% at 15-km resolution, while it has little impact on the track forecasts. The resultant improvement from the inclusion of the dissipative heating increases to 29% for the surface maximum winds at 5-km resolution for Hurricane Isabel (2003), where dissipative heating produces an unstable layer at low levels and warms a deep layer of the troposphere. While previous studies depicted a 65 m s−1 threshold for the dissipative heating to impact the TC intensity, it is found that dissipative heating has an effect on the TC intensity when the TC is of moderate strength with the surface maximum wind speed at 45 m s−1. Sensitivity tests reveal that there is significant nonlinear interaction between the dissipative heating from the surface friction and that from the turbulent kinetic energy dissipation in the interior atmosphere. A conceptualized description is given for the positive feedback mechanism between the two processes. The results presented here suggest that it is necessary to include both processes in a mesoscale model to better forecast the TC structure and intensity.


Sign in / Sign up

Export Citation Format

Share Document