Prediction of Turbulent Flow Over a Flat Plate With a Step Change From a Smooth to a Rough Surface Using a Near-Wall RANS Model

2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Minghan Chu ◽  
Donald J. Bergstrom

Abstract The present paper reports a numerical study of fully developed turbulent flow over a flat plate with a step change from a smooth to a rough surface. The Reynolds number based on momentum thickness for the smooth flow was Reθ=5950. The focus of the study was to investigate the capability of the Reynolds-averaged Navier–Stokes (RANS) equations to predict the internal boundary layer (IBL) created by the flow configuration. The numerical solution used a two-layer k−ε model to implement the effects of surface roughness on the turbulence and mean flow fields via the use of a hydrodynamic roughness length y0. The prediction for the mean velocity field revealed a development zone immediately downstream of the step in which the mean velocity profile included a lower region affected by the surface roughness below and an upper region with the characteristics of the smooth-wall boundary layer above. In this zone, both the turbulence kinetic energy and Reynolds shear stress profiles were characterized by a significant reduction in magnitude in the outer region of the flow that is unaffected by the rough surface. The turbulence kinetic energy profile was used to estimate the thickness of the IBL, and the resulting growth rate closely matched the experimental results. As such, the IBL is a promising test case for assessing the ability of RANS models to predict the discrete roughness configurations often encountered in industrial and environmental applications.

1980 ◽  
Vol 101 (1) ◽  
pp. 159-178 ◽  
Author(s):  
S. Yavuzkurt ◽  
R. J. Moffat ◽  
W. M. Kays

Hydrodynamic data are reported in the companion paper (Yavuzkurt, Moffat & Kays 1980) for a full-coverage film-cooling situation, both for the blown and the recovery regions. Values of the mean velocity, the turbulent shear stress, and the turbulence kinetic energy were measured at various locations, both within the blown region and in the recovery region. The present paper is concerned with an analysis of the recovery region only. Examination of the data suggested that the recovery-region hydrodynamics could be modelled by considering that a new boundary layer began to grow immediately after the cessation of blowing. Distributions of the Prandtl mixing length were calculated from the data using the measured values of mean velocity and turbulent shear stresses. The mixing-length distributions were consistent with the notion of a dual boundary-layer structure in the recovery region. The measured distributions of mixing length were described by using a piecewise continuous but heuristic fit, consistent with the concept of two quasi-independent layers suggested by the general appearance of the data. This distribution of mixing length, together with a set of otherwise normal constants for a two-dimensional boundary layer, successfully predicted all of the observed features of the flow. The program used in these predictions contains a one-equation model of turbulence, using turbulence kinetic energy with an algebraic mixing length. The program is a two-dimensional, finite-difference program capable of predicting the mean velocity and turbulence kinetic energy profiles based upon initial values, boundary conditions, and a closure condition.


1980 ◽  
Vol 31 (4) ◽  
pp. 221-237
Author(s):  
P.A. Aswatha Narayana

SummaryThe response of turbulent boundary layer to sudden change in surface roughness have been studied experimentally. Mean velocity measurements have been made in the boundary layer on a flat plate, downstream of a small step change in surface roughness under 3 different pressure gradients. The surface upstream of the step consisted of ‘k* type ‘large roughness’ wall (or ‘small roughness’ wall) and downstream of the step consisted of smooth surface (or ‘small roughness’ wall). Velocity profiles after the step change have been analysed on the basis of the two layer model. The inner region responds very quickly to the new boundary condition while the outer region takes more time to attain equilibrium or a state of local self-preservation. The skin-friction coefficient initially increased after the step change and gradually reached towards a constant value except for a particular roughness combination under adverse pressure gradient wherein the change in the roughness function is gradual over the transition.


2020 ◽  
Vol 77 (5) ◽  
pp. 1661-1681
Author(s):  
Qingfang Jiang ◽  
Qing Wang ◽  
Shouping Wang ◽  
Saša Gaberšek

Abstract The characteristics of a convective internal boundary layer (CIBL) documented offshore during the East Coast phase of the Coupled Air–Sea Processes and Electromagnetic Ducting Research (CASPER-EAST) field campaign has been examined using field observations, a coupled mesoscale model (i.e., Navy’s COAMPS) simulation, and a couple of surface-layer-resolving large-eddy simulations (LESs). The Lagrangian modeling approach has been adopted with the LES domain being advected from a cool and rough land surface to a warmer and smoother sea surface by the mean offshore winds in the CIBL. The surface fluxes from the LES control run are in reasonable agreement with field observations, and the general CIBL characteristics are consistent with previous studies. According to the LESs, in the nearshore adjustment zone (i.e., fetch < 8 km), the low-level winds and surface friction velocity increase rapidly, and the mean wind profile and vertical velocity skewness in the surface layer deviate substantially from the Monin–Obukhov similarity theory (MOST) scaling. Farther offshore, the nondimensional vertical wind shear and scalar gradients and higher-order moments are consistent with the MOST scaling. An elevated turbulent layer is present immediately below the CIBL top, associated with the vertical wind shear across the CIBL top inversion. Episodic shear instability events occur with a time scale between 10 and 30 min, leading to the formation of elevated maxima in turbulence kinetic energy and momentum fluxes. During these events, the turbulence kinetic energy production exceeds the dissipation, suggesting that the CIBL remains in nonequilibrium.


Author(s):  
Redha Wahidi ◽  
Walid Chakroun ◽  
Sami Al-Fahad

Turbulent boundary layer flows over a flat plate with multiple transverse square grooves spaced 10 element widths apart were investigated. Mean velocity profiles, turbulence intensity profiles, and the distributions of the skin-friction coefficients (Cf) and the integral parameters are presented for two grooved walls. The two transverse square groove sizes investigated are 5mm and 2.5mm. Laser-Doppler Anemometer (LDA) was used for the mean velocity and turbulence intensity measurements. The skin-friction coefficient was determined from the gradient of the mean velocity profiles in the viscous sublayer. Distribution of Cf in the first grooved-wall case (5mm) shows that Cf overshoots downstream of the groove and then oscillates within the uncertainty range and never shows the expected undershoot in Cf. The same overshoot is seen in the second grooved-wall case (2.5mm), however, Cf continues to oscillate above the uncertainty range and never returns to the smooth-wall value. The mean velocity profiles clearly represent the behavior of Cf where a downward shift is seen in the Cf overshoot region and no upward shift is seen in these profiles. The results show that the smaller grooves exhibit larger effects on Cf, however, the boundary layer responses to these effects in a slower rate than to those of the larger grooves.


1976 ◽  
Vol 77 (3) ◽  
pp. 473-497 ◽  
Author(s):  
L. J. S. Bradbury

This paper describes an investigation into the response of both the pulsed-wire anemometer and the hot-wire anemometer in a highly turbulent flow. The first part of the paper is concerned with a theoretical study of some aspects of the response of these instruments in a highly turbulent flow. It is shown that, under normal operating conditions, the pulsed-wire anemometer should give mean velocity and longitudinal turbulent intensity estimates to an accuracy of better than 10% without any restriction on turbulence level. However, to attain this accuracy in measurements of turbulent intensities normal to the mean flow direction, there is a lower limit on the turbulent intensity of about 50%. An analysis is then carried out of the behaviour of the hot-wire anemometer in a highly turbulent flow. It is found that the large errors that are known to develop are very sensitive to the precise structure of the turbulence, so that even qualitative use of hot-wire data in such flows is not feasible. Some brief comments on the possibility of improving the accuracy of the hot-wire anemometer are then given.The second half of the paper describes some comparative measurements in the highly turbulent flow immediately downstream of a normal flat plate. It is shown that, although it is not possible to interpret the hot-wire results on their own, it is possible to calculate the hot-wire response with a surprising degree of accuracy using the results from the pulsed-wire anemometer. This provides a rather indirect but none the less welcome check on the accuracy of the pulsed-wire results, which, in this very highly turbulent flow, have a certain interest in their own right.


2002 ◽  
Vol 124 (3) ◽  
pp. 664-670 ◽  
Author(s):  
Donald J. Bergstrom ◽  
Nathan A. Kotey ◽  
Mark F. Tachie

Experimental measurements of the mean velocity profile in a canonical turbulent boundary layer are obtained for four different surface roughness conditions, as well as a smooth wall, at moderate Reynolds numbers in a wind tunnel. The mean streamwise velocity component is fitted to a correlation which allows both the strength of the wake, Π, and friction velocity, Uτ, to vary. The results show that the type of surface roughness affects the mean defect profile in the outer region of the turbulent boundary layer, as well as determining the value of the skin friction. The defect profiles normalized by the friction velocity were approximately independent of Reynolds number, while those normalized using the free stream velocity were not. The fact that the outer flow is significantly affected by the specific roughness characteristics at the wall implies that rough wall boundary layers are more complex than the wall similarity hypothesis would allow.


1933 ◽  
Vol 1 (1) ◽  
pp. 19-28
Author(s):  
Walter Tollmien

Abstract In this survey the author first describes certain types of turbulent flow, following which he deals successively with the production of turbulent motion; the instability of the laminar motion; fully developed turbulence; momentum interchange and mixing lengths; and relations between the shearing stress at the wall and the mean velocity distributions. Finally he takes up the calculation of skin friction for simple cases of fully developed turbulence, especially for that of the flat plate. Although the methods outlined have often led to practically useful results, it is the author’s belief that they should be considered only as advances toward the real goal of the turbulence theory. The derivation of turbulence phenomena from the hydrodynamical equations will, in his opinion, be possible only by the application of statistical methods.


Author(s):  
G. D. MacIsaac ◽  
S. A. Sjolander ◽  
T. J. Praisner

Experimental measurements of the mean and turbulent flow field were preformed downstream of a low-speed linear turbine cascade. The influence of turbulence on the production of secondary losses is examined. Steady pressure measurements were collected using a seven-hole pressure probe and the turbulent flow quantities were measured using a rotatable x-type hotwire probe. Each probe was traversed downstream of the cascade along planes positioned at three axial locations: 100%, 120% and 140% of the axial chord (Cx) downstream of the leading edge. The seven-hole pressure probe was used to determine the local total and static pressure as well as the three mean velocity components. The rotatable x-type hotwire probe, in addition to the mean velocity components, provided the local Reynolds stresses and the turbulent kinetic energy. The axial development of the secondary losses is examined in relation to the rate at which mean kinetic energy is transferred to turbulent kinetic energy. In general, losses are generated as a result of the mean flow dissipating kinetic energy through the action of viscosity. The production of turbulence can be considered a preliminary step in this process. The measured total pressure contours from the three axial locations (1.00, 1.20 and 1.40Cx) demonstrate the development of the secondary losses. The peak loss core in each plane consists mainly of low momentum fluid that originates from the inlet endwall boundary layer. There are, however, additional losses generated as the flow mixes with downstream distance. These losses have been found to relate to the turbulent Reynolds stresses. An examination of the turbulent deformation work term demonstrates a mechanism of loss generation in the secondary flow region. The importance of the Reynolds shear stress to this process is explored in detail.


Author(s):  
Yoshifumi Jodai ◽  
Yoshikazu Takahashi ◽  
Masashi Ichimiya ◽  
Hideo Osaka

An experimental investigation has been made on a turbulent boundary layer near the trailing edge on a long flat plate. The flow was controlled by an additional splitter plate fitted to the trailing edge along the wake center line. The length of the splitter plate, l, was varied from a half, to five times the trailing edge thickness, h. Measurements of base pressure behind the trailing edge and of mean velocity and pressure distribution in the turbulent boundary layer on the flat plate were made under the freestream zero-pressure gradient. The absolute value of the base pressure coefficient of the long flat plate was considerably smaller than that of the short flat plate without the splitter plate. A significant increase in the base pressure coefficient was achieved with the splitter plate (l / h ≧ 1), fitted to the long flat plate. Within an inner layer in the turbulent boundary layer near the trailing edge, the mean velocity increased more than that in the upstream position in the case without the splitter plate. With the splitter plate, however, the base pressure rise made the mean velocity distribution more closely approach that of a fully-developed turbulent boundary layer.


Sign in / Sign up

Export Citation Format

Share Document