scholarly journals Probabilistic estimation of the Dynamic Wake Meandering model parameters using SpinnerLidar-derived wake characteristics

2021 ◽  
Vol 6 (5) ◽  
pp. 1117-1142
Author(s):  
Davide Conti ◽  
Nikolay Dimitrov ◽  
Alfredo Peña ◽  
Thomas Herges

Abstract. We study the calibration of the Dynamic Wake Meandering (DWM) model using high-spatial- and high-temporal-resolution SpinnerLidar measurements of the wake field collected at the Scaled Wind Farm Technology (SWiFT) facility located in Lubbock, Texas, USA. We derive two-dimensional wake flow characteristics including wake deficit, wake turbulence, and wake meandering from the lidar observations under different atmospheric stability conditions, inflow wind speeds, and downstream distances up to five rotor diameters. We then apply Bayesian inference to obtain a probabilistic calibration of the DWM model, where the resulting joint distribution of parameters allows for both model implementation and uncertainty assessment. We validate the resulting fully resolved wake field predictions against the lidar measurements and discuss the most critical sources of uncertainty. The results indicate that the DWM model can accurately predict the mean wind velocity and turbulence fields in the far-wake region beyond four rotor diameters as long as properly calibrated parameters are used, and wake meandering time series are accurately replicated. We show that the current DWM model parameters in the IEC standard lead to conservative wake deficit predictions for ambient turbulence intensities above 12 % at the SWiFT site. Finally, we provide practical recommendations for reliable calibration procedures.

2021 ◽  
Author(s):  
Davide Conti ◽  
Nikolay Dimitrov ◽  
Alfredo Peña ◽  
Thomas Herges

Abstract. In this first part of a two-part work, we study the calibration of the Dynamic Wake Meandering (DWM) model using high spatial and temporal resolution SpinnerLidar measurements of the wake field collected at the Scaled Wind Farm Technology (SWiFT) facility located in Lubbock, Texas, U.S.A. We derive two-dimensional wake flow characteristics including wake deficit, wake turbulence and wake meandering from the lidar observations under different atmospheric stability conditions, inflow wind speeds and downstream distances up to five rotor diameters. We then apply Bayesian inference to obtain a probabilistic calibration of the DWM model, where the resulting joint distribution of parameters allows both for model implementation and uncertainty assessment. We validate the resulting fully-resolved wake field predictions against the lidar measurements and discuss the most critical sources of uncertainty. The results indicate that the DWM model can accurately predict the mean wind velocity and turbulence fields in the far wake region beyond four rotor diameters, as long as properly-calibrated parameters are used and wake meandering time series are accurately replicated. We demonstrate that the current DWM-model parameters in the IEC standard lead to conservative wake deficit predictions. Finally, we provide practical recommendations for reliable calibration procedures.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1486 ◽  
Author(s):  
Nicolas Tobin ◽  
Adam Lavely ◽  
Sven Schmitz ◽  
Leonardo P. Chamorro

The dependence of temporal correlations in the power output of wind-turbine pairs on atmospheric stability is explored using theoretical arguments and wind-farm large-eddy simulations. For this purpose, a range of five distinct stability regimes, ranging from weakly stable to moderately convective, were investigated with the same aligned wind-farm layout used among simulations. The coherence spectrum between turbine pairs in each simulation was compared to theoretical predictions. We found with high statistical significance (p < 0.01) that higher levels of atmospheric instability lead to higher coherence between turbines, with wake motions reducing correlations up to 40%. This is attributed to higher dominance of atmospheric motions over wakes in strongly unstable flows. Good agreement resulted with the use of an empirical model for wake-added turbulence to predict the variation of turbine power coherence with ambient turbulence intensity (R 2 = 0.82), though other empirical relations may be applicable. It was shown that improperly accounting for turbine–turbine correlations can substantially impact power variance estimates on the order of a factor of 4.


2020 ◽  
Vol 12 (3) ◽  
pp. 462 ◽  
Author(s):  
Tobias Ahsbahs ◽  
Nicolai Gayle Nygaard ◽  
Alexander Newcombe ◽  
Merete Badger

We retrieve atmospheric wake characteristics at the wind farm Westermost Rough from Sentinel-1 Synthetic Aperture Radar (SAR) images. For the first time, co-located reference measurements of the full flow field around the wind farm are available from Doppler radars. One case with a reference measurement of up to 10 km downstream of the wind farms shows that SAR images depict the wake better close to the wind farm than further downstream. The comparison of two cases with similar wind speed and direction indicate that under unstable atmospheric stratification, we can retrieve the structure of the wake field close to the wind farm from SAR, while this was not possible for a case with stable stratification. We find that openly available Sentinel-1 image archives can be used to study the structure of wind farm wakes depending on the atmospheric stability conditions. From an average of twelve available co-located cases, we find that velocity deficits at the wind turbine hub height are 8% from Doppler radar measurements and 4% from SAR wind retrievals.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 388
Author(s):  
Riccardo De Blasis ◽  
Giovanni Batista Masala ◽  
Filippo Petroni

The energy produced by a wind farm in a given location and its associated income depends both on the wind characteristics in that location—i.e., speed and direction—and the dynamics of the electricity spot price. Because of the evidence of cross-correlations between wind speed, direction and price series and their lagged series, we aim to assess the income of a hypothetical wind farm located in central Italy when all interactions are considered. To model these cross and auto-correlations efficiently, we apply a high-order multivariate Markov model which includes dependencies from each time series and from a certain level of past values. Besides this, we used the Raftery Mixture Transition Distribution model (MTD) to reduce the number of parameters to get a more parsimonious model. Using data from the MERRA-2 project and from the electricity market in Italy, we estimate the model parameters and validate them through a Monte Carlo simulation. The results show that the simulated income faithfully reproduces the empirical income and that the multivariate model also closely reproduces the cross-correlations between the variables. Therefore, the model can be used to predict the income generated by a wind farm.


Sign in / Sign up

Export Citation Format

Share Document