scholarly journals Evaluation of tilt control for wind-turbine arrays in the atmospheric boundary layer

2021 ◽  
Vol 6 (3) ◽  
pp. 663-675
Author(s):  
Carlo Cossu

Abstract. Wake redirection is a promising approach designed to mitigate turbine–wake interactions which have a negative impact on the performance and lifetime of wind farms. It has recently been found that substantial power gains can be obtained by tilting the rotors of spanwise-periodic wind-turbine arrays. Rotor tilt is associated with the generation of coherent streamwise vortices which deflect wakes towards the ground and, by exploiting the vertical wind shear, replace them with higher-momentum fluid (high-speed streaks). The objective of this work is to evaluate power gains that can be obtained by tilting rotors in spanwise-periodic wind-turbine arrays immersed in the atmospheric boundary layer and, in particular, to analyze the influence of the rotor size on power gains in the case where the turbines emerge from the atmospheric surface layer. We show that, for the case of wind-aligned arrays, large power gains can be obtained for positive tilt angles of the order of 30∘. Power gains are substantially enhanced by operating tilted-rotor turbines at thrust coefficients higher than in the reference configuration. These power gains initially increase with the rotor size reaching a maximum for rotor diameters of the order of 3.6 boundary layer momentum thicknesses (for the considered cases) and decrease for larger sizes. Maximum power gains are obtained for wind-turbine spanwise spacings which are very similar to those of large-scale and very-large-scale streaky motions which are naturally amplified in turbulent boundary layers. These results are all congruent with the findings of previous investigations of passive control of canonical boundary layers for drag-reduction applications where high-speed streaks replaced wakes of spanwise-periodic rows of wall-mounted roughness elements.

2020 ◽  
Author(s):  
Carlo Cossu

Abstract. Wake redirection is a promising approach designed to mitigate turbine-wake interactions which have a negative impact on the performance and lifetime of wind farms. It has recently been found that substantial power gains can be obtained by tilting the rotors of spanwise-periodic wind-turbine arrays. Rotor tilt is associated to the generation of coherent streamwise vortices which deflect wakes towards the ground and, by exploiting the vertical wind shear, replace them with higher-momentum fluid (high-speed streaks). The objective of this work is to evaluate power gains that can be obtained by tilting rotors in spanwise-periodic wind-turbine arrays immersed in the atmospheric boundary layer and, in particular, to analyze the influence of the rotor size on power gains in the case where the turbines emerge from the atmospheric surface layer. We show that, for the case of wind-aligned arrays, large power gains can be obtained for positive tilt angles of the order of 30°. Power gains are substantially enhanced by operating tilted-rotor turbines at thrust coefficients higher than in the reference configuration. These power gains initially increase with the rotor size reaching a maximum for rotor diameters of the order of five boundary layer momentum thicknesses (for the considered cases) and decrease for larger sizes. Maximum power gains are obtained for wind-turbine spanwise spacings which are very similar to those of large-scale and very large scale streaky motions which are naturally amplified in turbulent boundary layers. These results are all congruent with the findings of previous investigations of passive control of canonical boundary layers for drag-reduction applications where high-speed streaks replaced wakes of spanwise-periodic rows of wall-mounted roughness elements.


Author(s):  
J. Stephen Hu ◽  
Jian Sheng ◽  
Michele Guala ◽  
Leonardo Chamorro

The focus of this paper is to characterize the upstream wake of a three bladed Horizontal Axis Wind Turbine (HAWT) and its interaction with the native structures within a turbulent boundary layer (TBL). The overarching question is the most prevailing length and time scales of coherent structures that would interact with a HAWT and how they would be affected. The implications include wall flow and structure interaction and flow induced noise generation in large scale turbo machineries. The experiments are performed on a turbine that has a 0.128 m rotor diameter, a hub height of 0.104 m and a tip speed ratio of 4. The HAWT model is placed in a large scale wind tunnel in a boundary layer with a thickness δ of ∼0.6 m. The boundary layer is generated by a 60 mm picket fence trip and developed over a smooth wall under thermally neutral conditions. Measurements are performed under ReD of 4 × 105 and 6 × 105. Both turbine geometries and flow conditions are scaled from operating conditions in the field. High speed Particle Image Velocimetry (PIV), turbine voltage output, and angular velocity measurements are conducted simultaneously, by which one could relate the upwind flow structures with the power output of the turbine. High speed PIV offer details in spatial and temporal characteristics of the impinging flow structures, whilst the voltage anemometer and tachometer provide instantaneous measurement of angular velocity of the turbine. PIV measurements are taken at a rate of 1500 image pairs per second with a 100 μs delay between laser pulses. Each sample area is 0.15 × 0.15 cm. Two locations up to two rotor diameters upwind are measured. Instantaneous voltage is taken at a sampling rate of 30 kHz and a sampling time of 60s to ensure sufficient temporal resolution and coverage. Ongoing analysis using conditional averaging based on extreme power output events will provide insights in assessing a HAWT performance in unsteady flow conditions.


Author(s):  
Ahmet Ozbay ◽  
Wei Tian ◽  
Hui Hu

An experimental study was carried out to investigate the aeromechanics and wake characteristics of dual-rotor wind turbines (DRWTs) in either co-rotating or counter-rotating configuration, in comparison to those of a conventional single-rotor wind turbine (SRWT). The experiments were performed in a large-scale aerodynamic/atmospheric boundary layer (AABL) wind tunnel, available at Iowa State University with the oncoming atmospheric boundary-layer (ABL) airflows under neutral stability conditions. In addition to measuring the power output performance of DRWT and SRWT models, static and dynamic wind loads acting on those turbine models were also investigated. Furthermore, a high-resolution digital particle image velocimetry (PIV) system was used to quantify the flow characteristics in the near wakes of the DRWT and SRWT models. The detailed wake-flow measurements were correlated with the power outputs and wind-load measurement results of the wind-turbine models to elucidate the underlying physics to explore/optimize design of wind turbines for higher power yield and better durability.


Author(s):  
Ahmet Ozbay ◽  
Wei Tian ◽  
Hui Hu

An experimental study was carried out to investigate the aeromechanics and wake characteristics of dual-rotor wind turbines (DRWTs ) in either co-rotating or counter-rotating configuration, in comparison to those of a conventional single-rotor wind turbine (SRWT). The experiments were performed in a large-scale Aerodynamic/Atmospheric Boundary Layer (AABL) wind tunnel available at Iowa State University with the oncoming Atmospheric Boundary Layer (ABL) airflows under neutral stability conditions. In addition to measuring the power output performance of DRWT and SRWT models, static and dynamic wind loads acting on those turbine models were also investigated. Furthermore, a high resolution digital particle image velocimetry (PIV) system was used to quantify the flow characteristics in the near wakes of the DRWT and SRWT models. The detailed wake flow measurements were correlated with the power outputs and wind load measurement results of the wind turbine models to elucidate the underlying physics to explore/optimize design of wind turbines for higher power yield and better durability.


2019 ◽  
pp. 0309524X1988092
Author(s):  
Mohamed Marouan Ichenial ◽  
Abdellah El-Hajjaji ◽  
Abdellatif Khamlichi

The assessment of climatological site conditions, airflow characteristics, and the turbulence affecting wind turbines is an important phase in developing wake engineering models. A method of modeling atmospheric boundary layer structure under atmospheric stability effects is crucial for accurate evaluation of the spatial scale of modern wind turbines, but by themselves, they are incapable to account for the varying large-scale weather conditions. As a result, combining lower atmospheric models with mesoscale models is required. In order to realize a reasonable approximation of initial atmospheric inflow condition used for wake identification behind an NREL 5-MW wind turbine, different vertical wind profile models on equilibrium conditions are tested and evaluated in this article. Wind farm simulator solvers require massive computing resources and forcing mechanisms tendencies inputs from weather forecast models. A three-dimensional Flow Redirection and Induction in Steady-state engineering model was developed for simulating and optimizing the wake losses of different rows of wind turbines under different stability stratifications. The obtained results were compared to high-fidelity simulation data generated by the famous Simulator for Wind Farm Applications. This work showed that a significant improvement related to atmospheric boundary layer structure can be made to develop accurate engineering wake models in order to reduce wake losses.


2019 ◽  
Vol 76 (7) ◽  
pp. 2065-2082 ◽  
Author(s):  
A. Foussard ◽  
G. Lapeyre ◽  
R. Plougonven

Abstract The response of the atmospheric boundary layer to mesoscale sea surface temperature (SST) is often characterized by a link between wind stress divergence and downwind SST gradients. In this study, an idealized simulation representative of a storm track above a prescribed stationary SST field is examined in order to determine in which background wind conditions that relationship occurs. The SST field is composed of a midlatitude large-scale frontal zone and mesoscale SST anomalies. It is shown that the divergence of the surface wind can correlate either with the Laplacian of the atmospheric boundary layer temperature or with the downwind SST gradient. The first case corresponds to background situations of weak winds or of unstable boundary layers, and the response is in agreement with an Ekman balance adjustment in the boundary layer. The second case corresponds to background situations of stable boundary layers, and the response is in agreement with downward mixing of momentum. Concerning the divergence of the wind stress, it generally resembles downwind SST gradients for stable and unstable boundary layers, in agreement with past studies. For weak winds, a correlation with the temperature Laplacian is, however, found to some extent. In conclusion, our study reveals the importance of the large-scale wind conditions in modulating the surface atmospheric response with different responses in the divergences of surface wind and wind stress.


2021 ◽  
Author(s):  
Hannah Marley ◽  
Kim Dirks ◽  
Andrew Neverman ◽  
Ian McKendry ◽  
Jennifer Salmond

<p><span><span>A brown air pollution haze that forms over some international cities during the winter has been found to be associated with negative health outcomes and high surface air pollution levels. Previous research has demonstrated a well-established link between the structure of the atmospheric boundary layer (ABL) and surface air quality; however, the degree to which the structure of the ABL influences for formation of local-</span></span><span><span>scale</span></span><span><span> brown haze is unknown. Using continuous ceilometer data covering seven consecutive winters, we investigate the influence of the structure of the ABL in relation to surface air pollution and brown haze formation over an urban area of complex coastal terrain in the Southern Hemisphere city of Auckland, New Zealand. Our results suggest the depth and evolution of the ABL has a strong influence on severe brown haze formation. When days with severe brown haze are compared with those when brown haze is expected but not observed (based on favorable meteorology and high surface air pollution levels), days with severe brown haze are found to coincide with significantly shallower daytime convective boundary layers (~ 48% lower), and the nights preceding brown haze formation are found to have significantly shallower nocturnal boundary layers (~ 28% lower). On severe brown haze days the growth rate during the morning transition phase from a nocturnal boundary layer to a convective daytime boundary layer is found to be significantly reduced (70 m h</span></span><sup><span><span>-1</span></span></sup><span><span>) compared to days on which brown haze is expected but not observed (170 m h</span></span><sup><span><span>-1</span></span></sup><span><span>). Compared with moderate brown haze, severe brown haze conditions are found to be associated with a significantly higher proportion of days with a distinct residual layer present in the ceilometer profiles, suggesting the entrainment of residual layer pollutants may contribute to the severity of the haze. This study illustrates the complex interaction between the ABL structure, air pollution, and the presence of brown haze, and demonstrates the utility of a ceilometer instrument in understanding and predicting the occurrence of brown haze events. </span></span></p>


Sign in / Sign up

Export Citation Format

Share Document