scholarly journals Global Stability of a Predator-Prey Model with Ivlev-Type Functional Response

2020 ◽  
Vol 99 (99) ◽  
pp. 1-12
Author(s):  
Yinshu Wu ◽  
Wenzhang Huang

A predator-prey model with Ivlev-Type functional response is studied. The main purpose is to investigate the global stability of a positive (co-existence) equilibrium, whenever it exists. A recently developed approach shows that for certain classes of models, there is an implicitly defined function which plays an important rule in determining the global stability of the positive equilibrium. By performing a detailed analytic analysis we demonstrate that a crucial property of this implicitly defined function is governed by the local stability of the positive equilibrium, which enable us to show that the global and local stability of the positive equilibrium, whenever it exists, is equivalent. We believe that our approach can be extended to study the global stability of the positive equilibrium for predator-prey models with some other types of functional responses.

2017 ◽  
Vol 10 (08) ◽  
pp. 1750119 ◽  
Author(s):  
Wensheng Yang

The dynamical behaviors of a diffusive predator–prey model with Beddington–DeAngelis functional response and disease in the prey is considered in this work. By applying the comparison principle, linearized method, Lyapunov function and iterative method, we are able to achieve sufficient conditions of the permanence, the local stability and global stability of the boundary equilibria and the positive equilibrium, respectively. Our result complements and supplements some known ones.


2021 ◽  
Author(s):  
Christopher Chow

We propose a predator-prey model by incorporating a constant harvesting rate into a Lotka-Volterra predator-prey model with prey refuge which was studied recently. All the positive equilibria and the local stability of the proposed model are studied and analyzed by sorting out the intervals of the parameters involved in the model. These intervals of the parameters exhibit the effects on the dynamical behaviors of prey and predators. The emphasis is put on the ranges of the prey refuge constant and harvesting rate. We show that the model has two positive boundary equilibria and one equilibrium. By using the qualitative theory for planar systems, we show that the two positive boundary equilibria can be saddles, saddle-nodes, topological saddles or stable or unstable nodes, and the interior positive equilibrium is locally asymptotically stable. Under suitable restrictions on the parameters, we prove that the positive interior equilibrium is a stable node.


2021 ◽  
Author(s):  
Christopher Chow

We propose a predator-prey model by incorporating a constant harvesting rate into a Lotka-Volterra predator-prey model with prey refuge which was studied recently. All the positive equilibria and the local stability of the proposed model are studied and analyzed by sorting out the intervals of the parameters involved in the model. These intervals of the parameters exhibit the effects on the dynamical behaviors of prey and predators. The emphasis is put on the ranges of the prey refuge constant and harvesting rate. We show that the model has two positive boundary equilibria and one equilibrium. By using the qualitative theory for planar systems, we show that the two positive boundary equilibria can be saddles, saddle-nodes, topological saddles or stable or unstable nodes, and the interior positive equilibrium is locally asymptotically stable. Under suitable restrictions on the parameters, we prove that the positive interior equilibrium is a stable node.


2012 ◽  
Vol 05 (06) ◽  
pp. 1250057 ◽  
Author(s):  
ZHONG LI ◽  
MAOAN HAN ◽  
FENGDE CHEN

In this paper, we consider a stage-structured predator–prey model with modified Leslie–Gower and Holling-type II schemes. Using an iterative technique, we investigate the global stability of the positive equilibrium of the system. Finally, some examples are presented to verify our main result.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Wensheng Yang

We study a diffusive predator-prey model with nonconstant death rate and general nonlinear functional response. Firstly, stability analysis of the equilibrium for reduced ODE system is discussed. Secondly, sufficient and necessary conditions which guarantee the predator and the prey species to be permanent are obtained. Furthermore, sufficient conditions for the global asymptotical stability of the unique positive equilibrium of the system are derived by using the method of Lyapunov function. Finally, we show that there are no nontrivial steady state solutions for certain parameter configuration.


2012 ◽  
Vol 2012 ◽  
pp. 1-25
Author(s):  
Yujuan Jiao ◽  
Shengmao Fu

We consider a strongly coupled predator-prey model with one resource and two consumers, in which the first consumer species feeds on the resource according to the Holling II functional response, while the second consumer species feeds on the resource following the Beddington-DeAngelis functional response, and they compete for the common resource. Using the energy estimates and Gagliardo-Nirenberg-type inequalities, the existence and uniform boundedness of global solutions for the model are proved. Meanwhile, the sufficient conditions for global asymptotic stability of the positive equilibrium for this model are given by constructing a Lyapunov function.


2012 ◽  
Vol 05 (04) ◽  
pp. 1250014 ◽  
Author(s):  
LIJUAN ZHA ◽  
JING-AN CUI ◽  
XUEYONG ZHOU

Ratio-dependent predator–prey models are favored by many animal ecologists recently as more suitable ones for predator–prey interactions where predation involves searching process. In this paper, a ratio-dependent predator–prey model with stage structure and time delay for prey is proposed and analyzed. In this model, we only consider the stage structure of immature and mature prey species and not consider the stage structure of predator species. We assume that the predator only feed on the mature prey and the time for prey from birth to maturity represented by a constant time delay. At first, we investigate the permanence and existence of the proposed model and sufficient conditions are derived. Then the global stability of the nonnegative equilibria are derived. We also get the sufficient criteria for stability switch of the positive equilibrium. Finally, some numerical simulations are carried out for supporting the analytic results.


2012 ◽  
Vol 05 (01) ◽  
pp. 1250008 ◽  
Author(s):  
XINYOU MENG ◽  
HAIFENG HUO ◽  
XIAOBING ZHANG

The combined effects of harvesting and time delay on predator-prey systems with Beddington–DeAngelis functional response are studied. The region of stability in model with harvesting of the predator, local stability of equilibria and the existence of Hopf bifurcation are obtained by analyzing the associated characteristic equation due to the two-parameter geometric criteria developed by Ma, Feng and Lu [Discrete Contin. Dyn. Syst. Ser B9 (2008) 397–413]. The global stability of the positive equilibrium is investigated by the comparison theorem. Furthermore, local stability of steady states and the existence of Hopf bifurcation for prey harvesting are also considered. Numerical simulations are given to illustrate our theoretical findings.


2017 ◽  
Vol 10 (06) ◽  
pp. 1750079 ◽  
Author(s):  
M. Sivakumar ◽  
K. Balachandran ◽  
K. Karuppiah

In this paper, we consider a diffusive density-dependent predator–prey model with Crowley–Martin functional responses subject to Neumann boundary condition. We analyze the stability of the positive equilibrium and the existence of spatially homogeneous and inhomogeneous periodic solutions through the distribution of the eigenvalues. The direction and stability of Hopf bifurcation are determined by the normal form theory and the center manifold theory. Finally, numerical simulations are given to verify our theoretical analysis.


Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2169
Author(s):  
Haiyin Li ◽  
Xuhua Cheng

In this paper, we investigate the stability of equilibrium in the stage-structured and density-dependent predator–prey system with Beddington–DeAngelis functional response. First, by checking the sign of the real part for eigenvalue, local stability of origin equilibrium and boundary equilibrium are studied. Second, we explore the local stability of the positive equilibrium for τ=0 and τ≠0 (time delay τ is the time taken from immaturity to maturity predator), which shows that local stability of the positive equilibrium is dependent on parameter τ. Third, we qualitatively analyze global asymptotical stability of the positive equilibrium. Based on stability theory of periodic solutions, global asymptotical stability of the positive equilibrium is obtained when τ=0; by constructing Lyapunov functions, we conclude that the positive equilibrium is also globally asymptotically stable when τ≠0. Finally, examples with numerical simulations are given to illustrate the obtained results.


Sign in / Sign up

Export Citation Format

Share Document