A Study On Single-Stage LLC Resonant Converter with Wide Range of Output Voltage

Author(s):  
Sang-Beom Park ◽  
Woo-Cheol Lee
Author(s):  
Sevilay Cetin ◽  

In this study, high efficiency design of an on-board Electrical Vehicle (EV) battery charger is presented. The presented charger has two stages where the first stage is conventional front-end boost converter and the second stage is LLC resonant converter. The basic principles of both stage are discussed and the detailed design procedures are presented in terms of wide range output voltage regulation, wide range load condition, high efficiency and high power density. The presented design approach is tested with a prototype implemented with 2.5 kW output power at 250 V-450 V output voltage range. The peak efficiency of system is obtained as 95.53% at full load condition.


2018 ◽  
Vol 1 (1) ◽  
pp. 544-557 ◽  
Author(s):  
Sevilay Cetin

This work presents detailed analysis of LLC resonant converter to accurately predcit the voltage gain of the converter. Nowadays, Lithium-ion battery cells are mostly preferred for on-board electrical vehicle (EV) battery chargers due to their high power density. This results in wide range output voltage regulation for battery charger. The output voltage regulation of LLC resonant converter is provided by the changing of switching frequency. However, conventional first harmonic approximation (FHA) method applying for resonant power converters produces error below resonance frequency. Therefore, the objective of this paper is accurate prediction of the voltage gain characteristic for LLC resonant converter using in EV battery charge applications. The detailed theoretical anlysis of the LLC resonant converter is presented and the presented analysis is compared with a simulation study with 2.7 kW output power and 250 V-450 V output voltage range.


Sign in / Sign up

Export Citation Format

Share Document