scholarly journals Current Pharmacologic Strategies for Treatment of Intractable Epilepsy in Children

2021 ◽  
Vol 25 (Suppl 1) ◽  
pp. S8-18 ◽  
Author(s):  
Ja Un Moon ◽  
Kyung-Ok Cho

Epileptic encephalopathy (EE) is a devastating pediatric disease that features medically resistant seizures, which can contribute to global developmental delays. Despite technological advancements in genetics, the neurobiological mechanisms of EEs are not fully understood, leaving few therapeutic options for affected patients. In this review, we introduce the most common EEs in pediatrics (i.e., Ohtahara syndrome, Dravet syndrome, and Lennox-Gastaut syndrome) and their molecular mechanisms that cause excitation/inhibition imbalances. We then discuss some of the essential molecules that are frequently dysregulated in EEs. Specifically, we explore voltage-gated ion channels, synaptic transmission-related proteins, and ligand-gated ion channels in association with the pathophysiology of Ohtahara syndrome, Dravet syndrome, and Lennox-Gastaut syndrome. Finally, we review currently available antiepileptic drugs used to treat seizures in patients with EEs. Since these patients often fail to achieve seizure relief even with the combination therapy, further extensive research efforts to explore the involved molecular mechanisms will be required to develop new drugs for patients with intractable epilepsy.

2019 ◽  
Author(s):  
L. Rems ◽  
M. A. Kasimova ◽  
I. Testa ◽  
L. Delemotte

AbstractPulsed electric fields are increasingly used in medicine to transiently increase the cell membrane permeability via electroporation, in order to deliver therapeutic molecules into the cell. One type of events that contributes to this increase in membrane permeability is the formation of pores in the membrane lipid bilayer. However, electrophysiological measurements suggest that membrane proteins are affected as well, particularly voltage-gated ion channels (VGICs). The molecular mechanisms by which the electric field could affects these molecules remain unidentified. In this study we used molecular dynamics (MD) simulations to unravel the molecular events that take place in different VGICs when exposing them to electric fields mimicking electroporation conditions. We show that electric fields induce pores in the voltage-sensor domains (VSDs) of different VGICs, and that these pores form more easily in some channels than in others. We demonstrate that poration is more likely in VSDs that are more hydrated and are electrostatically more favorable for the entry of ions. We further show that pores in VSDs can expand into so-called complex pores, which become stabilized by lipid head-groups. Our results suggest that such complex pores are considerably more stable than conventional lipid pores and their formation can lead to severe unfolding of VSDs from the channel. We anticipate that such VSDs become dysfunctional and unable to respond to changes in transmembrane voltage, which is in agreement with previous electrophyiological measurements showing a decrease in the voltage-dependent transmembrane ionic currents following pulse treatment. Finally, we discuss the possibility of activation of VGICs by submicrosecond-duration pulses. Overall our study reveals a new mechanism of electroporation through membranes containing voltage-gated ion channels.Statement of SignificancePulsed electric fields are often used for treatment of excitable cells, e.g., for gene delivery into skeletal muscles, ablation of the heart muscle or brain tumors. Voltage-gated ion channels (VGICs) underlie generation and propagation of action potentials in these cells, and consequently are essential for their proper function. Our study reveals the molecular mechanisms by which pulsed electric fields directly affect VGICs and addresses questions that have been previously opened by electrophysiologists. We analyze VGICs’ characteristics, which make them prone for electroporation, including hydration and electrostatic properties. This analysis is easily transferable to other membrane proteins thus opening directions for future investigations. Finally, we propose a mechanism for long-lived membrane permeability following pulse treatment, which to date remains poorly understood.


2007 ◽  
Vol 2 (3) ◽  
pp. 189-202 ◽  
Author(s):  
Le Jean-Yves ◽  
Ouadid-Ahidouch Halima ◽  
Soriani Olivier ◽  
Besson Pierre ◽  
Ahidouch Ahmed ◽  
...  

2009 ◽  
Vol 96 (3) ◽  
pp. 261a
Author(s):  
Muugu V. Brahmajothi ◽  
Michael. J. Morales ◽  
Donald L. Campbell ◽  
Charles Steenbergen ◽  
Harold C. Strauss

Author(s):  
Makoto Ihara

Abstract The Cys-loop superfamily of ligand-gated ion channels (Cys-loop receptors) is one of the most ubiquitous ion channel families in vertebrates and invertebrates. Despite their ubiquity, they are targeted by several classes of pesticides, including neonicotinoids, phenylpyrazols, and macrolides such as ivermectins. The current commercialized compounds have high target site selectivity, which contributes to the safety of insecticide use. Structural analyses have accelerated progress in this field; notably, the X-ray crystal structures of acetylcholine binding protein and glutamate-gated Cl channels revealed the details of the molecular interactions between insecticides and their targets. Recently, the functional expression of the insect nicotinic acetylcholine receptor (nAChR) has been described, and detailed evaluations using the insect nAChR have emerged. This review discusses the basic concepts and the current insights into the molecular mechanisms of neuroactive insecticides targeting the ligand-gated ion channels, particularly Cys-loop receptors, and presents insights into target-based selectivity, resistance, and future drug design.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Sonia Khan ◽  
Raidah Al Baradie

Epileptic encephalopathies are an epileptic condition characterized by epileptiform abnormalities associated with progressive cerebral dysfunction. In the classification of the International League Against Epilepsy eight age-related epileptic encephalopathy syndromes are recognized. These syndromes include early myoclonic encephalopathy and Ohtahara syndrome in the neonatal period, West syndrome and Dravet syndrome in infancy, myoclonic status in nonprogressive encephalopathies, and Lennox-Gastaut syndrome, Landau-Kleffner syndrome, and epilepsy with continuous spike waves during slow wave sleep in childhood and adolescences. Other epileptic syndromes such as migrating partial seizures in infancy and severe epilepsy with multiple independent spike foci may be reasonably added. In this paper, we provide an overview of epileptic encephalopathies including clinical neurophysiological features, cognitive deterioration, and management options especially that these conditions are generally refractory to standard antiepileptic drugs.


Sign in / Sign up

Export Citation Format

Share Document