Oxidative Stress after Lithium-Pilocarpine Induced Status Epilepticus in Mice Brain

2006 ◽  
Vol 13 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Arishya Sharma ◽  
Rajat Sandhir
2016 ◽  
Vol 10 (14) ◽  
pp. 278-288 ◽  
Author(s):  
de Albuquerque Oliveira Aline ◽  
Isabel Linhares Maria ◽  
Jos eacute Maia Chaves Filho Adriano ◽  
Ricardo Vasconcelos Rios Emiliano ◽  
Nayane de Carvalho Lima Camila ◽  
...  

Author(s):  
Jaroslava Folbergrová ◽  
Pavel Ješina ◽  
Hana Kubová ◽  
Rastislav Druga ◽  
Jakub Otáhal

Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1702
Author(s):  
Sereen Sandouka ◽  
Tawfeeq Shekh-Ahmad

Epilepsy is a chronic disease of the brain that affects over 65 million people worldwide. Acquired epilepsy is initiated by neurological insults, such as status epilepticus, which can result in the generation of ROS and induction of oxidative stress. Suppressing oxidative stress by upregulation of the transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2) has been shown to be an effective strategy to increase endogenous antioxidant defences, including in brain diseases, and can ameliorate neuronal damage and seizure occurrence in epilepsy. Here, we aim to test the neuroprotective potential of a naturally occurring Nrf2 activator sulforaphane, in in vitro epileptiform activity model and a temporal lobe epilepsy rat model. Sulforaphane significantly decreased ROS generation during epileptiform activity, restored glutathione levels, and prevented seizure-like activity-induced neuronal cell death. When given to rats after 2 h of kainic acid-induced status epilepticus, sulforaphane significantly increased the expression of Nrf2 and related antioxidant genes, improved oxidative stress markers, and increased the total antioxidant capacity in both the plasma and hippocampus. In addition, sulforaphane significantly decreased status epilepticus-induced neuronal cell death. Our results demonstrate that Nrf2 activation following an insult to the brain exerts a neuroprotective effect by reducing neuronal death, increasing the antioxidant capacity, and thus may also modify epilepsy development.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1807 ◽  
Author(s):  
Juste Baranauskaite ◽  
Ilona Sadauskiene ◽  
Arunas Liekis ◽  
Arturas Kasauskas ◽  
Robertas Lazauskas ◽  
...  

Aluminum accumulation, glutathione (GSH) and malondialdehyde (MDA) concentrations as well as catalase (CAT) and superoxide dismutase (SOD) activities were determined in erythrocytes and brain and liver homogenates of BALB/c mice treated with Al3+ (7.5 mg/kg/day (0.15 LD50) as AlCl3 (37.08 mg/kg/day), whereas HCl (30.41 mg/kg/day) was used as Cl− control, the treatments were performed for 21 days, i.p., in the presence and absence of rosmarinic acid (0.2805 mg/kg/day (0.05 LD50), 21 days, i.g.) or carvacrol (0.0405 mg/kg/day (0.05 LD50), 21 days, i.g.). The treatment with AlCl3 increased GSH concentration in erythrocytes only slightly and had no effect on brain and liver homogenates. Rosmarinic acid and carvacrol strongly increased GSH concentration in erythrocytes but decreased it in brain and liver homogenates. However, AlCl3 treatment led to Al accumulation in mice blood, brain, and liver and induced oxidative stress, assessed based on MDA concentration in the brain and liver. Both rosmarinic acid and carvacrol were able to counteract the negative Al effect by decreasing its accumulation and protecting tissues from lipid peroxidation. AlCl3 treatment increased CAT activity in mice brain and liver homogenates, whereas the administration of either rosmarinic acid or carvacrol alone or in combination with AlCl3 had no significant effect on CAT activity. SOD activity remained unchanged after all the treatments in our study. We propose that natural herbal phenolic compounds rosmarinic acid and carvacrol could be used to protect brain and liver against aluminum induced oxidative stress leading to lipid peroxidation.


IBRO Reports ◽  
2019 ◽  
Vol 6 ◽  
pp. S227-S228
Author(s):  
Kenia Pardo-Peña ◽  
Ana Sánchez-Lira ◽  
Aldo Yañez-Hernández ◽  
Laura Medina-Ceja

Sign in / Sign up

Export Citation Format

Share Document