2021 ◽  
Vol 2069 (1) ◽  
pp. 012189
Author(s):  
J Virbulis ◽  
M Sjomkane ◽  
M Surovovs ◽  
A Jakovics

Abstract In addition to infection with SARS-CoV-2 via direct droplet transmission or contact with contaminated surfaces, infection via aerosol transport is a predominant pathway in indoor environments. The developed numerical model evaluates the risk of a COVID-19 infection in a particular room based on measurements of temperature, humidity, CO2 and particle concentration, the number of people and instances of speech, coughs and sneezing using a dedicated low-cost sensor system. The model can dynamically provide the predicted risk of infection to the building management system or people in the room. The effect of temperature, humidity and ventilation intensity on the infection risk is shown. Coughing and especially sneezing greatly increase the probability of infection in the room; therefore distinguishing these events is crucial for the applied measurement system.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Johnathan Kongoletos ◽  
Ethan Munden ◽  
Jennifer Ballew ◽  
Daniel J. Preston

AbstractVentilation, including fume hoods, consumes 40–70% of the total energy used by modern laboratories. Energy-conscious fume hood usage—for example, closing the sash when a hood is unused—can significantly reduce energy expenditures due to ventilation. Prior approaches to promote such behaviors among lab users have primarily relied on passive feedback methods. In this work, we developed a low-cost fume hood monitoring device with active feedback to alert lab users when a fume hood is left open and unused. Using data collected by the building management system, we observed a 75.6% decrease in the average sash height after installation of these “Motion and Sash Height” (MASH) alarms, which would result in a reduction roughly equal to 43% of the annual carbon emissions of a typical American vehicle, for each fume hood. The MASH alarm presented here reduced energy costs by approximately $1,159 per year, per hood, at MIT.


Sign in / Sign up

Export Citation Format

Share Document