scholarly journals Dynamic Pricing and Energy Management Strategy for EV Charging Stations under Uncertainties

Author(s):  
Chao Luo ◽  
Yih-Fang Huang ◽  
Vijay Gupta
2021 ◽  
Author(s):  
Siham Naser Hendi Alalwan ◽  
Amjad Muneim Mohammed ◽  
Akin Tascikaraoglu ◽  
Joao P.S. Catalao

Author(s):  
Daniel P. Bertineti ◽  
Luciane N. Canha ◽  
Wagner Brignol ◽  
Aerton P. Medeiros ◽  
Rodrigo M. de Azevedo ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3709 ◽  
Author(s):  
Vasileios Boglou ◽  
Christos-Spyridon Karavas ◽  
Konstantinos Arvanitis ◽  
Athanasios Karlis

Electric vehicles (EVs) have become widespread during the last decade because of the distinct advantages they offer compared to the conventional ones. However, the increased penetration of EVs in the global transportation market has led increased electricity demands, which is expected to affect the operation of energy distribution systems. In the present paper, a demonstration about the effects of uncontrolled EVs charging in a case study low voltage (LV) network is demonstrated and a fuzzy energy management strategy for the coordination of EV charging in LV networks is presented, by including the distance of the EVs from the transformers in the fuzzy management systems for the first time. The Institute of Electrical and Electronics Engineers (IEEE) European Test Feeder is used as a case study low voltage distribution grid. In particular, the developed system configuration takes into consideration the architecture of the grid, the ampacities of the lines and the voltages at the system’s buses. Moreover, electric vehicles are considered as agent-based models, which are characterized by the model of each EV, the state-of-charge of their batteries and the charging power. In particular, an investigation into the effects of uncontrolled charging is performed, in which two approaches are examined. The first approach investigates the maximum number of chargeable EVs in the case study network and how it is influenced by the grid’s household loads. The second approach examines the number of network undervoltages and lines ampacity violations in a set of simulation scenarios. The results of the first approach show that the distance of the EVs from the networks substation affects the maximum number of chargeable EVs in a significant manner. Based on the observed results of the two approaches, a fuzzy management system is designed for the coordination of EV changing, which takes into account the distance from the EV charging points to the feeder substation, the state-of-charge of the EVs’ batteries and the EVs’ charging delay time.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1895
Author(s):  
Dominic Savio Abraham ◽  
Rajesh Verma ◽  
Lakshmikhandan Kanagaraj ◽  
Sundar Rajan Giri Thulasi Raman ◽  
Narayanamoorthi Rajamanickam ◽  
...  

The usage of electric vehicles (EV) has been increasing over the last few years due to a rise in fossil fuel prices and the rate of increasing carbon dioxide (CO2) emissions. EV-charging stations are powered by existing utility power grid systems, increasing the stress on the utility grid and the load demand at the distribution side. DC grid-based EV charging is more efficient than AC distribution because of its higher reliability, power conversion efficiency, simple interfacing with renewable energy sources (RESs), and integration of energy storage units (ESU). RES-generated power storage in local ESU is an alternative solution for managing the utility grid demand. In addition, to maintain the EV charging demand at the microgrid levels, energy management and control strategies must carefully power the EV battery charging unit. In addition, charging stations require dedicated converter topologies, control strategies, and need to follow set levels and standards. Based on EV, ESU, and RES accessibility, different types of microgrid architecture and control strategies are used to ensure optimum operation at the EV-charging point. Based on the above said merits, this review paper presents different RES-connected architecture and control strategies used in EV-charging stations. It highlights the importance of different charging station architectures with current power converter topologies proposed in the literature. In addition, a comparison of microgrid-based charging station architecture with its energy management, control strategies, and charging converter controls are also presented. The different levels and types of charging stations used for EV charging, in addition to controls and connectors used, are also discussed. An experiment-based energy management strategy was developed to control power flow among the available sources and charging terminals for the effective utilization of generated renewable power. The main motive of the EMS and its control is to maximize the usage of RES consumption. This review also provides the challenges and opportunities in EV-charging, and parameters in selecting appropriate charging stations.


Sign in / Sign up

Export Citation Format

Share Document