Estimation of Delay using Sensor Data for Reporting through Business Intelligence

Author(s):  
Victor Molano ◽  
Alexander Paz
Author(s):  
Kalyani akiri ◽  
Venkat Rao b

Increased smart devices in various industries is creating numerous sensors in each of the equipment prompting the need for methods and models for sensor data. Current research proposes a systematic approach to analyze the data generated from sensors attached to industrial equipment. The methodology involves data cleaning, preprocessing, basics statistics, outlier, and anomaly detection. Present study presents the prediction of RUL by using various Machine Learning models like Regression, Polynomial Regression, Random Forest, Decision Tree, XG Boost. Hyper Parameter Optimization is performed to find the optimal parameters for each variable. In each of the model for RUL prediction RMSE, MAE are compared. Outcome of the RUL prediction should be useful for decision maker to drive the business decision; hence Binary classification is performed, and business case analysis is performed. Business case analysis includes the cost of maintenance and cost of non-maintaining a particular asset. Current research is aimed at integrating the machine intelligence and business intelligence so that the industrial operations optimized both in resource and profit.


2020 ◽  
Vol 13 (2) ◽  
pp. 685-739
Author(s):  
Mathias Eggert ◽  
Jens Alberts

Abstract Researching the field of business intelligence and analytics (BI & A) has a long tradition within information systems research. Thereby, in each decade the rapid development of technologies opened new room for investigation. Since the early 1950s, the collection and analysis of structured data were the focus of interest, followed by unstructured data since the early 1990s. The third wave of BI & A comprises unstructured and sensor data of mobile devices. The article at hand aims at drawing a comprehensive overview of the status quo in relevant BI & A research of the current decade, focusing on the third wave of BI & A. By this means, the paper’s contribution is fourfold. First, a systematically developed taxonomy for BI & A 3.0 research, containing seven dimensions and 40 characteristics, is presented. Second, the results of a structured literature review containing 75 full research papers are analyzed by applying the developed taxonomy. The analysis provides an overview on the status quo of BI & A 3.0. Third, the results foster discussions on the predicted and observed developments in BI & A research of the past decade. Fourth, research gaps of the third wave of BI & A research are disclosed and concluded in a research agenda.


2021 ◽  
Vol 3 (1) ◽  
pp. 27-38
Author(s):  
S. Kalyani ◽  
A. Mary Sowjanya ◽  
K. Venkat Rao

Author(s):  
Xue Ning

The healthcare industry has generated a huge amount of data in diverse formats. The big data in healthcare is leading the revolution in healthcare. Collecting data at the operational level is the starting point for the big data-driven healthcare revolution. By analyzing the operational level big data, healthcare organizations can gain the business intelligence for further strategy development, for example how to improve the healthcare quality, how to provide better long-term care, and how to empower the patients. This chapter discusses this process as operations-intelligence-strategy (OIS) process in healthcare. Objectives are understanding how to gain business intelligence from sensor data mining in healthcare, biomedical signal analysis, and biomedical image analysis, and exploring the applications and impacts of the OIS process, with a focus on the sensor data mining in healthcare.


2009 ◽  
Author(s):  
Bradley M. Davis ◽  
Woodrow W. Winchester ◽  
Jason D. Zedlitz
Keyword(s):  

2004 ◽  
Author(s):  
Jeff Worst ◽  

2017 ◽  
Vol 1 (2) ◽  
Author(s):  
Abdul Hamid Arribathi ◽  
Maimunah Maimunah ◽  
Devi Nurfitriani

This study aims to determine the stages that must be implemented in building a Business Intelligence System structured and appropriate in building Business Intelligence Systems in an organization, and understand the important aspects that must be considered for investment development Business Intelligence System is increasing. Business must be based on the conditions and needs of the organization in achieving the desired goals. If these conditions occur, then the decision-making process will be better and more accurate. The purpose of this study is to determine the important aspects that must be understood and prepared in using the Business Intelligence System in an organization. The method used is the explanation as well as the research library of several books, articles and other literature.


2012 ◽  
pp. 39-43
Author(s):  
Janusz Nesterak ◽  
Bernard Ziębicki

Zarządzanie przedsiębiorstwem we współczesnych warunkach wymaga stosowania zaawansowanych systemów umożliwiających gromadzenie i przetwarzanie informacji do postaci użytecznej w podejmowaniu decyzji zarządczych. Możliwości takie stwarzają systemy klasy Business Intelligence. Systemy te obecnie są już szeroko stosowane w krajowych przedsiębiorstwach. Ostatnio coraz popularniejsze stają się systemy określane mianem Business Performance Management, które są traktowane jako kolejna generacja Business Intelligence. Istota systemów Business Performance Management dotychczas nie była szeroko prezentowane w literaturze krajowej. Część badaczy zajmujących się tą tematyką traktuje wymienione kategorie systemów jako tożsame. W artykule przedstawiono istotę systemów Business Performance Management oraz omówiono różnice pomiędzy tą kategorią rozwiązań i systemami Business Intelligence. Omówiono także elementy tworzące systemy Business Performance Management. Przedstawiono również metodykę oraz korzyści stosowania Business Performance Management w przedsiębiorstwach. (abstrakt oryginalny)


2018 ◽  
Vol 18 (1) ◽  
pp. 20-32 ◽  
Author(s):  
Jong-Min Kim ◽  
Jaiwook Baik

2020 ◽  
Vol 20 (4) ◽  
pp. 332-342
Author(s):  
Hyung Jun Park ◽  
Seong Hee Cho ◽  
Kyung-Hwan Jang ◽  
Jin-Woon Seol ◽  
Byung-Gi Kwon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document