scholarly journals Impact of Time Slot Adjustment on a Multi-hop and Multi-channel Solution for Dynamic WSN Topologies

Author(s):  
Honoré Bizagwira ◽  
Joël Toussaint ◽  
Michel Misson
Keyword(s):  
2014 ◽  
Vol E97.B (7) ◽  
pp. 1303-1312 ◽  
Author(s):  
Masahiro NAKAGAWA ◽  
Kyota HATTORI ◽  
Naoki KIMISHIMA ◽  
Masaru KATAYAMA ◽  
Akira MISAWA

Author(s):  
Robert Klein ◽  
Michael Neugebauer ◽  
Dimitri Ratkovitch ◽  
Claudius Steinhardt
Keyword(s):  

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Axel Boese ◽  
Alexander Wagner ◽  
Alfredo Illanes ◽  
Uwe Bernd Liehr ◽  
Johann Jakob Wendler ◽  
...  

AbstractPhotodynamic diagnostic (PDD) is an optical enhancement option for the endoscope to support the detection of cancer, for example in the bladder. In real application PDD efficiency suffers due to the complex accumulation of the photosensitizing drug inside the tumor and the associated processes of heme syntheses to create the fluorescent components needed. To optimize the diagnostic outcome of PDD it would be helpful to predict the optimal time for diagnosis based on measurable precursors. In a previous cell study, we proposed a new filter fluorometer to image the accumulation of the precursors Coproporphyrin III (CP-III) and Uroporphyrin III (UP-III) that metabolize to Protoporphyrin IX (PP-IX) later. This accumulation process can be used to predict the optimal time slot for diagnostic imaging. Therefore, a new filter system was designed to distinguish between CP-III and PP-IX. In this work we tested this filter system in combination with a standard PDD endoscopic imaging system. Goal of this study was to prove the technical feasibility in a non-patient setup to prepare a later clinical study.


2021 ◽  
Vol 26 ◽  
pp. 1-19
Author(s):  
Martín Farach-Colton ◽  
Katia Leal ◽  
Miguel A. Mosteiro ◽  
Christopher Thraves Caro

We consider the Windows Scheduling (WS) problem, which is a restricted version of Unit-Fractions Bin Packing, and it is also called Inventory Replenishment in the context of Supply Chain. In brief, WS problem is to schedule the use of communication channels to clients. Each client c i is characterized by an active cycle and a window w i . During the period of time that any given client c i is active, there must be at least one transmission from c i scheduled in any w i consecutive time slots, but at most one transmission can be carried out in each channel per time slot. The goal is to minimize the number of channels used. We extend previous online models, where decisions are permanent, assuming that clients may be reallocated at some cost. We assume that such cost is a constant amount paid per reallocation. That is, we aim to minimize also the number of reallocations. We present three online reallocation algorithms for Windows Scheduling. We evaluate experimentally multiple variants of these protocols showing that, in practice, all three achieve constant amortized reallocations with close to optimal channel usage. Our simulations also expose interesting tradeoffs between reallocations and channel usage. We introduce a new objective function for WS with reallocations that can be also applied to models where reallocations are not possible. We analyze this metric for one of the algorithms that, to the best of our knowledge, is the first online WS protocol with theoretical guarantees that applies to scenarios where clients may leave and the analysis is against current load rather than peak load. Using previous results, we also observe bounds on channel usage for one of the algorithms.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhiping Song ◽  
Shibiao Chen ◽  
Yang Zhang ◽  
Xiaoyun Shi ◽  
Na Zhao ◽  
...  

Abstract Background Hypertonic saline solution has been frequently utilized in clinical practice. However, due to the nonphysiological osmolality, hypertonic saline infusion usually induces local vascular pain. We conducted this study to evaluate the effect of lidocaine coinfusion for alleviating vascular pain induced by hypertonic saline. Methods One hundred and six patients undergoing hypertonic saline volume preloading prior to spinal anesthesia were randomly allocated to two groups of 53 each. Group L received a 1 mg/kg lidocaine bolus followed by infusion of 2 mg/kg/h through the same IV line during hypertonic saline infusion; Group C received a bolus and infusion of normal saline of equivalent volume. Visual analogue scale (VAS) scores of vascular pain were recorded every 4 min. Results The vascular pain severity in Group L was significantly lower than that in Group C for each time slot (P < 0.05). The overall incidence of vascular pain during hypertonic saline infusion in Group L was 48.0%, which was significantly lower than the incidence (79.6%) in Group C (P < 0.05). Conclusion Lidocaine coinfusion could effectively alleviate vascular pain induced by hypertonic saline infusion. Trial registration Chinese Clinical Trial Registry, number: ChiCTR1900023753. Registered on 10 June 2019.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2347
Author(s):  
Yanyan Wang ◽  
Lin Wang ◽  
Ruijuan Zheng ◽  
Xuhui Zhao ◽  
Muhua Liu

In smart homes, the computational offloading technology of edge cloud computing (ECC) can effectively deal with the large amount of computation generated by smart devices. In this paper, we propose a computational offloading strategy for minimizing delay based on the back-pressure algorithm (BMDCO) to get the offloading decision and the number of tasks that can be offloaded. Specifically, we first construct a system with multiple local smart device task queues and multiple edge processor task queues. Then, we formulate an offloading strategy to minimize the queue length of tasks in each time slot by minimizing the Lyapunov drift optimization problem, so as to realize the stability of queues and improve the offloading performance. In addition, we give a theoretical analysis on the stability of the BMDCO algorithm by deducing the upper bound of all queues in this system. The simulation results show the stability of the proposed algorithm, and demonstrate that the BMDCO algorithm is superior to other alternatives. Compared with other algorithms, this algorithm can effectively reduce the computation delay.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 880
Author(s):  
Faisal Nadeem ◽  
Mahyar Shirvanimoghaddam ◽  
Yonghui Li ◽  
Branka Vucetic

This paper investigates the two-user uplink non-orthogonal multiple access (NOMA) paired with the hybrid automatic repeat request (HARQ) in the finite blocklength regime, where the target latency of each user is the priority. To limit the packet delivery delay and avoid packet queuing of the users, we propose a novel NOMA-HARQ approach where the retransmission of each packet is served non-orthogonally with the new packet in the same time slot. We use a Markov model (MM) to analyze the dynamics of the uplink NOMA-HARQ with one retransmission and characterize the packet error rate (PER), throughput, and latency performance of each user. We also present numerical optimizations to find the optimal power ratios of each user. Numerical results show that the proposed scheme significantly outperforms the standard NOMA-HARQ in terms of packet delivery delay at the target PER.


2014 ◽  
Vol 46 ◽  
pp. 16-29 ◽  
Author(s):  
Luca Corolli ◽  
Guglielmo Lulli ◽  
Lewis Ntaimo

Omega ◽  
2018 ◽  
Vol 81 ◽  
pp. 208-219 ◽  
Author(s):  
Bruno P. Bruck ◽  
Jean-François Cordeau ◽  
Manuel Iori
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document