time slot allocation
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 29)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xueyong Yu

This article conducts an indepth study on the delay caused by time division multiple access (TDMA) technology and theoretically analyzes some methods that can reduce the TDMA delay. Traditional dynamic time slot allocation algorithms usually only consider the completion of conflict-free time slot allocation in distributed scenarios, but they do not clearly specify the order of time slot allocation. The order of time slots allocated to each node is ultimately consistent with the new data flow. The order of media dissemination is not the same. Aiming at the scheduling delay problem caused by the inconsistency of the new media low-latency propagation time slot allocation sequence and the data stream sequence, a protocol using the master time slot adaptive time slot exchange technology is proposed. The protocol designs the corresponding super frame structure and realizes the neighbor node discovery strategy and the time slot allocation based on the priority list. At the same time, the time slot switching technology is used to adjust the time slot sequence so that it tends to the data flow sequence. The exchange criterion based on the low-latency propagation data stream value of the new media is designed to solve the problem of optimizing the time slot of multiple data streams in the network. Through the simulation results and analysis, it can be seen that the architecture design proposed in this paper can fulfill the expected requirements of the wireless Mesh network and can achieve good low-latency performance for the highly dynamic network topology. It can also achieve good performance in terms of network throughput and data flow delivery rate, and it has adaptability to high dynamic topologies. By comparing with the traditional algorithm design, the design proposed in this paper has a large improvement in low latency and high submission rate. Therefore, it can be considered that the low-latency architecture design proposed in this article has better performance for new media’s low-latency propagation and highly dynamic network topology.


2021 ◽  
Vol 17 (3) ◽  
pp. 155014772110038
Author(s):  
Hongying Bai ◽  
Xiaotong Zhang ◽  
Yuxin Liu ◽  
Yingdong Xie

Effective scheduling of limited communication resources is one of the critical methods for data transmission in the Internet of things. However, the time slot utilization rate of many existing resource scheduling methods of Internet of things is not high. This article proposes a new efficient resource scheduling based on routing tree and detection matrix for Internet of things. In heterogeneous Internet of things, according to the different working modes and functions, the nodes are divided into Internet of things devices, routing nodes, and base station. We use time slot multiplexing to improve the time slot utilization of continuous transmission in Internet of things. First, the time slot allocation table in a round is obtained by the time slot scheduling based on the routing tree. Then, the collision matrix and the transmission matrix are established based on the time slot allocation table in a round. Finally, the minimum time slot scheduling in continuous rounds is determined based on the routing tree and the detection matrix. The experimental results show that the resource scheduling based on routing tree and detection matrix effectively improves the utilization of time slots and improves the throughput of the Internet of things.


Sign in / Sign up

Export Citation Format

Share Document