Modified Spline-based Path Planning for Autonomous Ground Vehicle

Author(s):  
Evgeni Magid ◽  
Roman Lavrenov ◽  
Airat Khasianov
Keyword(s):  
2018 ◽  
Vol 06 (04) ◽  
pp. 251-266
Author(s):  
Phillip J. Durst ◽  
Christopher T. Goodin ◽  
Cindy L. Bethel ◽  
Derek T. Anderson ◽  
Daniel W. Carruth ◽  
...  

Path planning plays an integral role in mission planning for ground vehicle operations in urban areas. Determining the optimum path through an urban area is a well-understood problem for traditional ground vehicles; however, in the case of autonomous unmanned ground vehicles (UGVs), additional factors must be considered. For an autonomous UGV, perception algorithms rather than platform mobility will be the limiting factor in operational capabilities. For this study, perception was incorporated into the path planning process by associating sensor error costs with traveling through nodes within an urban road network. Three common perception sensors were used for this study: GPS, LIDAR, and IMU. Multiple set aggregation operators were used to blend the sensor error costs into a single cost, and the effects of choice of aggregation operator on the chosen path were observed. To provide a robust path planning ability, a fuzzy route planning algorithm was developed using membership functions and fuzzy rules to allow for qualitative route planning in the case of generalized UGV performance. The fuzzy membership functions were then applied to several paths through the urban area to determine what sensors were optimized in each path to provide a measure of the UGV’s performance capabilities. The research presented in this paper shows the impacts that sensing/perception has on ground vehicle route planning by demonstrating a fuzzy route planning algorithm constructed by using a robust rule set that quantifies these impacts.


2016 ◽  
Vol 78 (6-6) ◽  
Author(s):  
R. N. Farah ◽  
Amira Shahirah ◽  
N. Irwan ◽  
R. L. Zuraida

The challenging part of path planning for an Unmanned Ground Vehicle (UGV) is to conduct a reactive navigation. Reactive navigation is implemented to the sensor based UGV. The UGV defined the environment by collecting the information to construct it path planning. The UGV in this research is known as Mobile Guard UGV-Truck for Surveillance (MG-TruckS). Modified Virtual Semi Circle (MVSC) helps the MG-TruckS to reach it predetermined goal point successfully without any collision. MVSC is divided into two phases which are obstacles detection phase and obstacles avoidance phase to compute an optimal path planning. MVSC produces shorter path length, smoothness of velocity and reach it predetermined goal point successfully.


Robotica ◽  
2019 ◽  
Vol 38 (3) ◽  
pp. 493-511 ◽  
Author(s):  
Yang Chen ◽  
Shiwen Ren ◽  
Zhihuan Chen ◽  
Mengqing Chen ◽  
Huaiyu Wu

SummaryThis paper considers the path planning problem for deployment and collection of a marsupial vehicle system which consists of a ground mobile robot and two aerial flying robots. The ground mobile robot, usually unmanned ground vehicle (UGV), as a carrier, is able to deploy and harvest the aerial flying robots, and each aerial flying robot, usually unmanned aerial vehicles (UAVs), takes off from and lands on the carrier. At the same time, owing to the limited duration in the air in one flight, UAVs should return to the ground mobile robot timely for its energy-saving and recharge. This work is motivated by cooperative search and reconnaissance missions in the field of heterogeneous robot system. Especially, some targets with given positions are assumed to be visited by any of the UAVs. For the cooperative path planning problem, this paper establishes a mathematical model to solve the path of two UAVs and UGV. Many real constraints including the maximum speed of two UAVs and UGV, the minimum charging time of two UAVs, the maximum hovering time of UAVs, and the dynamic constraints among UAVs and UGV are considered. The objective function is constructed by minimizing the time for completing the whole mission. Finally, the path planning problem of the robot system is transformed into a multi-constrained optimization problem, and then the particle swarm optimization algorithm is used to obtain the path planning results. Simulations and comparisons verify the feasibility and effectiveness of the proposed method.


Author(s):  
Jurgen Zoto ◽  
Maria Angela Musci ◽  
Aleem Khaliq ◽  
Marcello Chiaberge ◽  
Irene Aicardi

Author(s):  
S. Narayan ◽  
T. V. Prasannakumar ◽  
M. Prasanth ◽  
N. Praveen Velavan ◽  
N. Praveen Kumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document