scholarly journals Numerical Simulation of Oil Spill in Nanri Island Channel Based on the MIKE Spill Analysis Model

Author(s):  
Cui Wang ◽  
Cui Wang ◽  
Shang Jiang ◽  
Shang Jiang ◽  
Zhouhua Guo ◽  
...  
2013 ◽  
Vol 353-356 ◽  
pp. 692-695
Author(s):  
Chang Zhi Zhu ◽  
Quan Chen Gao

Based on an Engineering Example which was supported by the stepped soil-nail wall, a numerical analysis model was established by FLAC3D,and the process of the excavation and supporting was simulated, and the numerical results of the soil nails internal force and foundation pit deformation were obtained. The simulated result was consistent with the measured results. It shows that the method of FLAC3D numerical analysis can be used to the numerical analysis of foundation pit excavation and supporting, and it will provide the basis for the design and construction of practice project.


1994 ◽  
Vol 17 (4) ◽  
pp. 473-484 ◽  
Author(s):  
Bao‐Shi Shiau ◽  
Rong‐Sen Tsai

Author(s):  
R Hu ◽  
N Wang ◽  
S Jiang ◽  
L Zhu ◽  
J Wu ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Jie Fang ◽  
Lei Tian ◽  
Yanyan Cai ◽  
Zhiguo Cao ◽  
Jinhao Wen ◽  
...  

The water inrush of a working face is the main hidden danger to the safe mining of underwater coal seams. It is known that the development of water-flowing fractured zones in overlying strata is the basic path which causes water inrushes in working faces. In the engineering background of the underwater mining in the Longkou Mining Area, the analysis model and judgment method of crack propagation were created on the basis of the Mohr–Coulomb criterion. Fish language was used to couple the extension model into the FLAC3d software, in order to simulate the mining process of the underwater coal seam, as well as to analyze the initiation evolutionary characteristics and seepage laws of the fractured zones in the overlying strata during the advancing processes of the working face. The results showed that, during the coal seam mining process, the mining fractured zones which had been caused by the compression-shear and tension-shear were mainly concentrated in the overlying strata of the working face. Also, the open-off cut and mining working face were the key sections of the water inrush in the rock mass. The condition of the water disaster was the formation of a water inrush channel. The possible water inrush channels in underwater coal mining are mainly composed of water-flowing fractured zones which are formed during the excavation processes. The numerical simulation results were validated through the practical engineering of field observations on the height of water-flowing fractured zone, which displayed a favorable adaptability.


Author(s):  
Juan Xu ◽  
Zongrui Hao ◽  
Yue Wang ◽  
Jin Liu ◽  
Gang Liu ◽  
...  

2014 ◽  
Vol 687-691 ◽  
pp. 679-683 ◽  
Author(s):  
Jun Zhang ◽  
Yong Wu ◽  
Hong Mei Tang ◽  
Chun Ren Tang ◽  
Xian Hua Li

The oil spill will directly affect the measuring accuracy of the gear flowmeter, so use the computational fluid dynamics software to calculate the leakage regulation of the internal gear flowmeter is one of the important things. Based on Pumplinx, when the end clearances of the gear flowmeter were 0um, 10um, 20um, 30um, 40um and 50um, the corresponding numerical analysis of spillage was carried out. From the results of numerical analysis, with the increase of the end clearance, the leakage amplification will also increase. In practical work, we should control the end clearance of gear flowmeter strictly while the gear works normally.


Author(s):  
Yi Huang ◽  
Yufeng He ◽  
Ming Tang ◽  
Xiangqiang Min ◽  
Yehua Sheng ◽  
...  

Robotica ◽  
2004 ◽  
Vol 22 (5) ◽  
pp. 523-531 ◽  
Author(s):  
Moojin Kim ◽  
Wonkyu Moon ◽  
Daesung Bae ◽  
Ilhan Park

When modeling the dynamics of robotic systems containing electric motors, the force generated by the motor is generally considered only as an applied torque or force that is independent of mechanical state variables such as velocity. Due to the electromechanical coupling effects in the motors, this approach leads engineers working on a robotic system to designing faulty controllers. In this paper, we propose a dynamics analysis model in which DC motor dynamics are embedded into a mechanical dynamics model such that the electromechanical coupling effects are included in the overall model. A model for the DC motor is developed based on its equivalent circuit model and incorporated into the generalized recursive dynamics formula previously developed by our group. The resulting dynamic numerical simulation program provides an effective and realistic approach for analyzing the electromechanical dynamics of robotic systems driven by DC motors. The developed numerical simulation tool is evaluated by applying to an industrial robot and a flexible antenna system driven by DC motors for a satellite.


Sign in / Sign up

Export Citation Format

Share Document