On Numerical Simulation of the Stepped Soil-Nail Wall

2013 ◽  
Vol 353-356 ◽  
pp. 692-695
Author(s):  
Chang Zhi Zhu ◽  
Quan Chen Gao

Based on an Engineering Example which was supported by the stepped soil-nail wall, a numerical analysis model was established by FLAC3D,and the process of the excavation and supporting was simulated, and the numerical results of the soil nails internal force and foundation pit deformation were obtained. The simulated result was consistent with the measured results. It shows that the method of FLAC3D numerical analysis can be used to the numerical analysis of foundation pit excavation and supporting, and it will provide the basis for the design and construction of practice project.

Author(s):  
Marcio Yamamoto ◽  
Sotaro Masanobu ◽  
Satoru Takano ◽  
Shigeo Kanada ◽  
Tomo Fujiwara ◽  
...  

In this article, we present the numerical analysis of a Free Standing Riser. The numerical simulation was carried out using a commercial riser analysis software suit. The numerical model’s dimensions were the same of a 1/70 reduced scale model deployed in a previous experiment. The numerical results were compared with experimental results presented in a previous article [1]. Discussion about the model and limitations of the numerical analysis is included.


2012 ◽  
Vol 446-449 ◽  
pp. 1940-1943
Author(s):  
Yang Liu ◽  
Hong Xiang Yan

Numerical simulation of vibro-stone column is taken to simulate the installation of vibro-stone column. A relationship based on test is adopted to calculate the excess pore pressure induced by vibratory energy during the installation of vibro-stone column. A numerical procedure is developed based on the formula and Terzaghi-Renduric consolidation theory. Finally numerical results of composite stone column are compared single stone column.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Bo Li ◽  
Cangqin Jia ◽  
Guihe Wang ◽  
Jun Ren ◽  
Gaofeng Lu ◽  
...  

Based on the Yongdingmen Station of Beijing Metro, the underwater excavation method for deep foundation pit was introduced. This study constructed a numerical analysis model to analyze the performance of surface settlement and lateral wall deflection in the process of underwater excavation. Results showed that this method was better to control the surface settlement and lateral wall deflection compared with other dewatering excavations. In detail, most of the surface settlement was caused during the dry excavation stage and dewatering excavation stage while the deflection caused by underwater excavation only accounted for about 10% of the total settlement. Besides, the maximum settlement occurred 0.25∼0.5 H e behind the retaining wall and the value was 0.04% H e . Similar to the result of the surface settlement, most of the lateral wall deflection had been completed before the underwater excavation, which only caused about 7% of the total deflection. The maximum wall deflection and its location were approximately 0.06% H e and 0.5 H e , respectively. Moreover, a series of 3D numerical analyses were studied on the design parameters of the underwater excavation method. This study can be used as a reference for general performance and structural design of foundation pits with underwater excavation.


2014 ◽  
Vol 638-640 ◽  
pp. 507-511
Author(s):  
Chong Ma ◽  
Xin Gang Wang ◽  
Bin Hu ◽  
Hong Bing Zhan

The rapid development of deep foundation pit engineering, has become an important part of the urbanization construction, which brings deep excavation support of geotechnical engineering problem research also became a major issue. This paper uses the international well-known geotechnical engineering numerical simulation software FLAC3D, through 3D finite difference numerical calculation and analysis, to better simulation calculation and analysis of deep foundation pit construction site condition, forecast after excavation of the deep foundation pit deformation displacement and dangerous position, analysis of deep foundation pit excavation process isolation pile - steel shotcrete combined support effect. Three dimensional numerical model analysis and calculation in deep foundation pit engineering design and construction scheme optimization with economy is convenient wait for a obvious advantages, can for deep foundation pit excavation of deep foundation pit support design and construction to provide effective basis.


2021 ◽  
Author(s):  
Hui Wang ◽  
Jian-hua Cheng ◽  
Yuan-cheng Guo

Abstract Retaining structure enhanced with soil nails and prestressed anchors is found good at constraining the horizontal displacement and therefore ensuring the stability of the foundation pit during excavation. Based on these advantages, such retaining structure is widely used in foundation excavation practice. This paper presents results of a series of in-situ tests conducted to investigate the mechanical behaviors of retaining structure enhanced with soil nails and prestressed anchors. Behaviors of three different retaining structures enhanced with i) soil-nails; ii) soil-nails and prestressed anchors without unbonded part; iii) soil-nails and prestressed anchors with a 2.5m unbonded length, were monitored during staged excavation to investigate the influences of i) the prestressing force and ii) unbonded length of the prestressed anchors on the performance of the entire retaining system. It was found that the affecting the stress and deformation of composite retaining system, which is in agreement with the other published results in the literature. The variation of the magnitude and distribution of soil nail force responding to the anchor prestressing force however showed no systematic trend. The unbonded length of anchors, which is suggested to be the main factor affecting the structural stability in dense materials in the literature, is found to have little influence in loose fill materials used in this study. Studies presented in this paper are useful for the rational design and serviceability analysis of the composite soil-nailed retaining structure enhanced with prestressed anchors.


2014 ◽  
Vol 1030-1032 ◽  
pp. 714-718
Author(s):  
Hui Tao

The paper introduces the application of prestressed anchors and soil nails support system in complex soil layer deep foundation pit engineering at Lanzhou region based on the deep foundation pit engineering in Gansu Provincial Hospital of TCM as the background and discusses its key technology. The effect shows that scheme of the design of foundation pit support engineering is reasonable and effective.The engineering meets requirements of design and environment.The monitoring results show that prestressed anchors can control the horizontal displacement and the change rate of slope′s vertical settlement effectively. The experience of engineering is significance for similar engineerings at Lanzhou region.


Author(s):  
Yutaro Hihara ◽  
Kota Matsuura ◽  
Hideaki Monji ◽  
Yutaka Abe ◽  
Akiko Kaneko ◽  
...  

When a severe accident occurs, decommissioning work becomes important task. In the decommissioning work after the severe accident, establishing the way to estimate the sedimentation place of molten debris is important. However, the technique to estimate exactly sedimentation place has not been enough. Therefore, the detailed and phenomenological numerical simulation code named JUPITER for predicting the molten core behavior is under development. The comparison between experimental and numerical results is necessary to clarify the validity of the numerical analysis code. This study provides the experimental data for a BWR to examine the numerical simulation code in order to contribute to progress of the decommissioning work.


2013 ◽  
Vol 353-356 ◽  
pp. 421-425 ◽  
Author(s):  
Bao Xue Shan ◽  
Lu Chao Liu ◽  
Cui Wei

In this paper, based on an actual pit excavation project, the mechanical process of excavating and retaining is simulated. Combined with the monitoring data, the stress, displacement of soil and internal force of retaining structures are analyzed, and the characteristics of deformation and force are summarized. This research offers references for safe and economical design and construction, and helps to improve the design theory of foundation pit support.


Sign in / Sign up

Export Citation Format

Share Document