Adaptative Clinical Decision Support System using Machine Learning and Authoring Tools

Author(s):  
Jon Kerexeta ◽  
Jordi Torres ◽  
Naiara Muro ◽  
Kristin Rebescher ◽  
Nekane Larburu
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Gwang Hyeon Choi ◽  
Jihye Yun ◽  
Jonggi Choi ◽  
Danbi Lee ◽  
Ju Hyun Shim ◽  
...  

Abstract There is a significant discrepancy between the actual choice for initial treatment option for hepatocellular carcinoma (HCC) and recommendations from the currently used BCLC staging system. We develop a machine learning-based clinical decision support system (CDSS) for recommending initial treatment option in HCC and predicting overall survival (OS). From hospital records of 1,021 consecutive patients with HCC treated at a single centre in Korea between January 2010 and October 2010, we collected information on 61 pretreatment variables, initial treatment, and survival status. Twenty pretreatment key variables were finally selected. We developed the CDSS from the derivation set (N = 813) using random forest method and validated it in the validation set (N = 208). Among the 1,021 patients (mean age: 56.9 years), 81.8% were male and 77.0% had positive hepatitis B BCLC stages 0, A, B, C, and D were observed in 13.4%, 26.0%, 18.0%, 36.6%, and 6.3% of patients, respectively. The six multi-step classifier model was developed for treatment decision in a hierarchical manner, and showed good performance with 81.0% of accuracy for radiofrequency ablation (RFA) or resection versus not, 88.4% for RFA versus resection, and 76.8% for TACE or not. We also developed seven survival prediction models for each treatment option. Our newly developed HCC-CDSS model showed good performance in terms of treatment recommendation and OS prediction and may be used as a guidance in deciding the initial treatment option for HCC.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 185676-185687
Author(s):  
Noha Ossama El-Ganainy ◽  
Ilangko Balasingham ◽  
Per Steinar Halvorsen ◽  
Leiv Arne Rosseland

2019 ◽  
Vol 26 (12) ◽  
pp. 1560-1565 ◽  
Author(s):  
G Segal ◽  
A Segev ◽  
A Brom ◽  
Y Lifshitz ◽  
Y Wasserstrum ◽  
...  

Abstract Background Drug prescription errors are made, worldwide, on a daily basis, resulting in a high burden of morbidity and mortality. Existing rule-based systems for prevention of such errors are unsuccessful and associated with substantial burden of false alerts. Objective In this prospective study, we evaluated the accuracy, validity, and clinical usefulness of medication error alerts generated by a novel system using outlier detection screening algorithms, used on top of a legacy standard system, in a real-life inpatient setting. Materials and Methods We integrated a novel outlier system into an existing electronic medical record system, in a single medical ward in a tertiary medical center. The system monitored all drug prescriptions written during 16 months. The department’s staff assessed all alerts for accuracy, clinical validity, and usefulness. We recorded all physician’s real-time responses to alerts generated. Results The alert burden generated by the system was low, with alerts generated for 0.4% of all medication orders. Sixty percent of the alerts were flagged after the medication was already dispensed following changes in patients’ status which necessitated medication changes (eg, changes in vital signs). Eighty-five percent of the alerts were confirmed clinically valid, and 80% were considered clinically useful. Forty-three percent of the alerts caused changes in subsequent medical orders. Conclusion A clinical decision support system that used a probabilistic, machine-learning approach based on statistically derived outliers to detect medication errors generated clinically useful alerts. The system had high accuracy, low alert burden and low false-positive rate, and led to changes in subsequent orders.


Sign in / Sign up

Export Citation Format

Share Document