Blue Light and Melanopsin Contribution to the Pupil Constriction in the Blind-spot, Parafovea and Periphery

Author(s):  
Tim Schilling ◽  
Mojtaba Soltanlou ◽  
Yeshwanth Seshadri ◽  
Hans-Christoph Nuerk ◽  
Hamed Bahmani
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana Amorim-de-Sousa ◽  
Tim Schilling ◽  
Paulo Fernandes ◽  
Yeshwanth Seshadri ◽  
Hamed Bahmani ◽  
...  

AbstractUpregulation of retinal dopaminergic activity may be a target treatment for myopia progression. This study aimed to explore the viability of inducing changes in retinal electrical activity with short-wavelength light targeting melanopsin-expressing retinal ganglion cells (ipRGCs) passing through the optic nerve head. Fifteen healthy non-myopic or myopic young adults were recruited and underwent stimulation with blue light using a virtual reality headset device. Amplitudes and implicit times from photopic 3.0 b-wave and pattern electroretinogram (PERG) were measured at baseline and 10 and 20 min after stimulation. Relative changes were compared between non-myopes and myopes. The ERG b-wave amplitude was significantly larger 20 min after blind-spot stimulation compared to baseline (p < 0.001) and 10 min (p < 0.001) post-stimulation. PERG amplitude P50-N95 also showed a significant main effect for ‘Time after stimulation’ (p < 0.050). Implicit times showed no differences following blind-spot stimulation. PERG and b-wave changes after blind-spot stimulation were stronger in myopes than non-myopes. It is possible to induce significant changes in retinal electrical activity by stimulating ipRGCs axons at the optic nerve head with blue light. The results suggest that the changes in retinal electrical activity are located at the inner plexiform layer and are likely to involve the dopaminergic system.


2018 ◽  
Author(s):  
Harrison McAdams ◽  
Aleksandra Sasha Igdalova ◽  
Manuel Spitschan ◽  
David H. Brainard ◽  
Geoffrey K. Aguirre

AbstractPurposeTo measure the pupil response to pulses of melanopsin-directed contrast, and compare this response to those evoked by cone-directed contrast and spectrally-narrowband stimuli.Methods3-second unipolar pulses were used to elicit pupil responses in human subjects across 3 sessions. Thirty subjects were studied in Session 1, and most returned for Sessions 2 and 3. The stimuli of primary interest were “silent substitution” cone‐ and melanopsin-directed modulations. Red and blue narrowband pulses delivered using the post-illumination pupil response (PIPR) paradigm were also studied. Sessions 1 and 2 were identical, while Session 3 involved modulations around higher radiance backgrounds. The pupil responses were fit by a model whose parameters described response amplitude and temporal shape.ResultsGroup average pupil responses for all stimuli overlapped extensively across Sessions 1 and 2, indicating high reproducibility. Model fits indicate that the response to melanopsin-directed contrast is prolonged relative to that elicited by cone-directed contrast. The group average cone‐ and melanopsin-directed pupil responses from Session 3 were highly similar to those from Sessions 1 and 2, suggesting that these responses are insensitive to background radiance over the range studied. The increase in radiance enhanced persistent pupil constriction to blue light.ConclusionsThe group average pupil response to stimuli designed through silent substitution provides a reliable probe of the function of a melanopsin-mediated system in humans. As disruption of the melanopsin system may relate to clinical pathology, the reproducibility of response suggests that silent substitution pupillometry can test if melanopsin signals differ between clinical groups.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241900
Author(s):  
Maria Angeles Bonmati-Carrion ◽  
Javier Padilla ◽  
Raquel Arguelles-Prieto ◽  
Anna M. Österholm ◽  
John R. Reynolds ◽  
...  

We present evidence of pupil response modification, as well as differential theoretical melatonin suppression through selective and dynamic electrochromic filtering of visible light in the 400–500 nm range to minimize chronodisruptive nocturnal blue light exposure. A lower activation of intrinsically photosensitive retinal ganglion cells (ipRGCs), the first step for light to reach a human’s internal clock, is related to melatonin secretion therefore avoiding detrimental effects of excessive blue light exposure. Pupillary Light Reflex and Color Naming were experimentally assessed under light filtered by two different coloration states (transmissive and absorptive) of these novel dynamic filters, plus an uncoated test device, in 16 volunteers. Also, different commercial light sources at illuminances ranging from 1 to 1000 lux were differentially filtered and compared in terms of theoretical melatonin suppression. Representative parameters of the pupil responses reflected lower pupil constriction when the electrochromic filters (ECFs) were switched on (absorptive state, blue light is absorbed by the filter) compared to uncoated filters (control sample), but failed to do so under transmissive state (blue light passes through the filter) indicating less activation of ipRGCs under absorptive state (although no significant differences between states was found). Out of eight colors tested, just one showed significant differences in naming between both filter states. Thus, the ECF would have some protecting effect on ipRGC activation with very limited changes in color perception. While there are some limitations of the theoretical model used, the absorptive state yielded significantly lower theoretical melatonin suppression in all those light sources containing blue wavelengths across the illuminance range tested. This would open the way for further research on biological applications of electrochromic devices.


1975 ◽  
Vol 20 (8) ◽  
pp. 641-642
Author(s):  
JUDITH LONG LAWS

Author(s):  
Cristiano L. Guarana ◽  
Christopher M. Barnes ◽  
Wei Jee Ong
Keyword(s):  

1989 ◽  
Author(s):  
Vanessa Laufer ◽  
Boja Vasic
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document