scholarly journals Precambrian obducted serpentinites in the Rhodope Massif

2021 ◽  
Vol 82 (1) ◽  
pp. 63-73
Author(s):  
Evgenia Kozhoukharova

The Precambrian metamorphic complex in the Rhodope Massif is built of two lithostratigraphic units: the lower is an ancient granite-gneiss continental crust – Prarhodopian Group (PRG), and the upper one – a Neoproterozoic metamorphosed volcano-sedimentary rock complex – Rhodopian Group (RG). The lower stratigraphic levels of the RG are occupied by an ophiolitic association consisting of serpentinites, amphibolites, and metagabbros. The serpentinites constantly occupy the same level between the continental gneisses surface of the PRG and the base of the RG. The high degree of serpentinization (85–95%) indicates low temperature hydration metamorphism on the surface of an ultrabasic ocean plate. The formation of the Rhodope ophiolitic association has taken place in a Neoproterozoic supra-subduction zone in three stages: a. serpentinization at the ocean floor; b. obduction of serpentinite fragments, scraped from soft and plastic hydrated coat of the sliding ultrabasic plate; c. SSZ-type autochthonous Neoproterozoic (610–566 Ma) basic volcanism, including and covering serpentinite bodies. This determines a heterogeneous nature of the ophiolitic association. The lower granite-gneiss complex – PRG may have been a part of some microcontinent after the breaking of the supercontinent Rodinia. The formation of a supra-subduction zone – SSZ and the obduction of serpentinite fragments started during ocean closure preceding the amalgamation of supercontinent Gondwana.

2021 ◽  
pp. 1-16
Author(s):  
Mansoor Ahmad ◽  
Abdul Qayoom Paul ◽  
Priyanka Negi ◽  
Salim Akhtar ◽  
Bibhuti Gogoi ◽  
...  

Abstract The Proterozoic Chotanagpur Granite Gneiss Complex (CGGC) at the northern boundary of the Central Indian Tectonic Zone (CITZ) of the eastern Indian shield preserves relics of fossilized oceanic back-arc crust. We describe the field, petrographical and geochemical characteristics of the mafic rocks comprising pillow basalts and dolerites from the Bathani area of the northern fringe of the CGGC, eastern India. The basalts consist of plagioclase feldspar, hornblende, opaque minerals (Fe–Ti oxide) and chlorite, and the dolerite consists of plagioclase, hornblende and opaque minerals. Our data indicate that the Bathani mafic rocks have tholeiitic to transitional composition and are overprinted by greenschist facies metamorphic conditions; however, REE and fluid immobile elements preserve their primary geochemical signatures. The (La/Sm)N ratios (1.38–2.15) and chondrite-normalized REE patterns point to an enriched mid-ocean ridge basalt (E-MORB) mantle source. Geochemical characteristics indicate a mixed signature of MORB and arc tholeiite with enrichment of Ba, Th, Eu and Sr, similar to that of back-arc supra-subduction zone ophiolites. These mafic rocks are the product of MORB-like magma derived from a depleted mantle corresponding to < 2% partial melting of spinel lherzolite, enriched by subduction-induced slab metasomatism and melting. The Bathani mafic rocks are representative of the upper part of a supra-subduction zone columnar ophiolite section, which was emplaced onto the present-day northern margin of the CGGC during suturing of the northern and southern Indian block at c. 1.9 Ga during the Nuna amalgamation.


2017 ◽  
Vol 112 (3) ◽  
pp. 393-413 ◽  
Author(s):  
Bibhuti Gogoi ◽  
Ashima Saikia ◽  
Mansoor Ahmad ◽  
Talat Ahmad

2006 ◽  
Vol 43 (2) ◽  
pp. 213-244 ◽  
Author(s):  
P Glombick ◽  
R I Thompson ◽  
P Erdmer ◽  
L Heaman ◽  
R M Friedman ◽  
...  

The Aberdeen gneiss complex is composed of complexly deformed migmatitic orthogneiss and paragneiss situated within the core of the Vernon antiform, a structure defined by a series of subparallel reflectors visible at upper to middle crustal depths (6–18 km) in seismic reflection data from the Vernon area of the Shuswap metamorphic complex. The Vernon antiform and the Aberdeen gneiss complex lie within the footwall of the gently west dipping (top to the west) Kalamalka Lake shear zone. Migmatitic gneiss exposed within the antiform records evidence (recorded as age domains in complexly zoned zircon grains) of three metamorphic events, occurring at 155–150, 90, and 66–51 Ma. The timing of magmatic events within the antiform includes emplacement of diorite at ~232 Ma, tonalite at ~151 Ma, granodiorite at 102 Ma, and monzonite at 52 Ma. Middle to Late Jurassic metamorphism resulted in widespread migmatization. Early Tertiary metamorphism (66–51 Ma) was coeval with the emplacement of granitic rocks and exhumation typical of other areas of the Shuswap metamorphic complex. Highly deformed orthogneiss situated within the hanging wall of the Kalamalka Lake shear zone, comprising the superstructure, was emplaced at ~171 Ma. Ductile deformation had ceased by 162 Ma. The complex metamorphic and magmatic evolution of the Vernon antiform, which is similar to other areas of the southern Canadian Cordillera including the Nicola horst, Mount Lytton – Eagle plutonic complex, Cariboo Mountains, and Mica Creek area, may reflect episodic tectonic activity at the plate margin.


2013 ◽  
Vol 53 ◽  
pp. 276-286 ◽  
Author(s):  
Alexander I. Khanchuk ◽  
Victor P. Nechaev ◽  
Laura P. Plyusnina ◽  
Nikolay V. Berdnikov ◽  
Vladimir P. Molchanov ◽  
...  

2007 ◽  
Vol 144 (5) ◽  
pp. 797-810 ◽  
Author(s):  
GAVIN HEUNG-NGAI CHAN ◽  
JOHN MALPAS ◽  
COSTAS XENOPHONTOS ◽  
CHING-HUA LO

The Troodos ophiolite in Cyprus and Baer–Bassit ophiolite in Syria together form part of the Tethyan ophiolite belt. They were generated in a supra-subduction zone setting in Late Cretaceous times. As with many of the ophiolite occurrences in this belt, the sequences are closely associated with tectonic ‘coloured mélange’ zones, which contain, among a variety of lithologies, metre- to kilometre-size blocks of metamorphic rocks. Precise 40Ar–39Ar laser step-heating experiments performed on four amphibolites from SW Cyprus and six from NW Syria, yield plateau ages ranging from 75.7±0.3 Ma to 88.9±0.8 Ma in Cyprus and 71.7±0.5 to 88.4±0.4 Ma in Syria. The older limits of these time spans are coeval with the age of the formation of the associated ophiolites. Unlike other metamorphic sole rocks which seem to form in relatively short time spans, these metamorphic rocks found in Cyprus and Syria are interpreted to have formed in Late Cretaceous times by accretion below the overriding Troodos and Baer–Bassit crust for a period of 15–18 Ma. The metamorphic complexes were exhumed by extension and crustal thinning associated with subduction roll-back and the rotation of the overriding plate until the cessation of subduction in Maastrichtian times. In Cyprus, the exhumed metamorphic complex was incorporated into an accretionary prism constructed primarily of the collapsed Mamonia passive margin sequence intercalated with rocks of the Troodos ophiolite during plate collision in the Maastrichtian. Concomitantly, in Syria, the Baer–Bassit ophiolite and subcreted metamorphic complex were emplaced onto the Arabian passive margin and fragmented into blocks and knockers, forming the Baer–Bassit mélange.


Sign in / Sign up

Export Citation Format

Share Document