Mafic rocks with back-arc E-MORB affinity from the Chotanagpur Granite Gneiss Complex of India: relicts of a Proterozoic Ophiolite suite

2021 ◽  
pp. 1-16
Author(s):  
Mansoor Ahmad ◽  
Abdul Qayoom Paul ◽  
Priyanka Negi ◽  
Salim Akhtar ◽  
Bibhuti Gogoi ◽  
...  

Abstract The Proterozoic Chotanagpur Granite Gneiss Complex (CGGC) at the northern boundary of the Central Indian Tectonic Zone (CITZ) of the eastern Indian shield preserves relics of fossilized oceanic back-arc crust. We describe the field, petrographical and geochemical characteristics of the mafic rocks comprising pillow basalts and dolerites from the Bathani area of the northern fringe of the CGGC, eastern India. The basalts consist of plagioclase feldspar, hornblende, opaque minerals (Fe–Ti oxide) and chlorite, and the dolerite consists of plagioclase, hornblende and opaque minerals. Our data indicate that the Bathani mafic rocks have tholeiitic to transitional composition and are overprinted by greenschist facies metamorphic conditions; however, REE and fluid immobile elements preserve their primary geochemical signatures. The (La/Sm)N ratios (1.38–2.15) and chondrite-normalized REE patterns point to an enriched mid-ocean ridge basalt (E-MORB) mantle source. Geochemical characteristics indicate a mixed signature of MORB and arc tholeiite with enrichment of Ba, Th, Eu and Sr, similar to that of back-arc supra-subduction zone ophiolites. These mafic rocks are the product of MORB-like magma derived from a depleted mantle corresponding to < 2% partial melting of spinel lherzolite, enriched by subduction-induced slab metasomatism and melting. The Bathani mafic rocks are representative of the upper part of a supra-subduction zone columnar ophiolite section, which was emplaced onto the present-day northern margin of the CGGC during suturing of the northern and southern Indian block at c. 1.9 Ga during the Nuna amalgamation.

2018 ◽  
Vol 54 (6) ◽  
pp. 3489-3508 ◽  
Author(s):  
Abhishek Saha ◽  
Abhay V. Mudholkar ◽  
K.A. Kamesh Raju ◽  
Bhagyashee Doley ◽  
Simontini Sensarma

Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1385
Author(s):  
Hannan Younis ◽  
Farooq Ahmad ◽  
Ramoona Shehzadi ◽  
Ishrat Asghar ◽  
Tanveer Ahmad ◽  
...  

Radioactivity in Granites of Pakistan systematically increases from south to north. The Ambella Granite found at the northern edge of Pakistan is highly radioactive. Radioactivity measurements made on, so called, Bajaur Granite, located in northern Pakistan, have been found to be lowest among all the granitic rock of the area. In order to find out the exact nature of Bajaur rocks, mineralogical studies were carried on rock chips and powdered samples. The Bajaur Norite contains plagioclase feldspar more than 45% as the chief constituent. Orthopyroxene and clinopyroxene are 27% and 18%. Quartz, biotite, and some opaque minerals are also found in accessory amounts. Bajaur Granite is in fact not a granite but Norite, which is rich in Na-Ca plagioclase series of feldspars. The plagioclase feldspar rich in Na-Ca are low in radioactivity. Moreover, the average gamma activities of 226Ra, 232Th, and 40K (4.98 ± 0.13 Bqkg−1, 4.03 ± 0.31 Bqkg−1, 204.40 ± 4.72 Bqkg−1 and a total of all three radionuclides are 214.00 ± 5.39 Bqkg−1) for Bajaur Norites are found too be much less than the average of the world’s Granites. Indoor and outdoor hazard indices of Bajaur Norite are much below building materials used throughout the world and largely beneath their criterion restrictions. As per radiations’ hazards are concerned, the Bajaur Norite as a building stone may be considered as the safest material available in the area that does not pose any radiological hazard.


2005 ◽  
Vol 142 (5) ◽  
pp. 617-631 ◽  
Author(s):  
S. GÜRSU ◽  
M. C. GÖNCÜOGLU

The Lower Cambrian (Tommotian) Gögebakan Formation in western Central Anatolia is made up of slightly metamorphosed continental to shallow marine clastic rocks with pillowed and massive spilitic lavas and dolerite dykes. Spilitic lavas, commonly amygdaloidal, are albite- and pyroxene-phyric with the metamorphic mineral paragenesis albite+calcite+sericite±epidote±tremolite±chlorite. Dolerite dykes mainly include plagioclase and pyroxene as primary minerals and tremolite±epidote±chlorite as low-grade secondary minerals. Geochemical data show that the spilitic lavas and dolerite dykes are sub-alkaline, of oceanic tholeiitic basalt character and display a tholeiitic fractional trend, characterized by an increase in FeO/MgO and Zr and TiO2 in variation diagrams. They are characterized by relatively high Zr/Y (2–4.5), relatively high Th/Yb (0.15–1.0) and La/Nb (0.5–2.5). Both show marked negative Nb and Ti anomalies relative to Th and La (Ce), implying a subduction-related chemistry. Chondrite-normalized REE patterns display slight enrichment of light REE (spilitic lavas (La/Yb)N = 0.79–1.56; dolerite dykes (La/Yb)N = 0.89–3.50) fairly comparable with MORB. The geochemical similarity of the spilitic lavas and dolerite dykes suggests a co-genetic origin. La/Nb ratios of both types are slightly higher than average MORB values and were possibly formed in the early stages of back-arc basin development. Petrogenetic modelling suggests the mafic rocks of the formation were formed by 9% batch melting of spinel lherzolite in shallower depths (c. 60 km). Taken together the data suggest that the Early Cambrian mafic rocks of the Taurus units were developed in a back-arc basin along the northern edge of Gondwana above the southward-subducting oceanic lithosphere and may represent initial rifting that resulted in separation of the peri-Gondwanan terranes.


2021 ◽  
Vol 82 (1) ◽  
pp. 63-73
Author(s):  
Evgenia Kozhoukharova

The Precambrian metamorphic complex in the Rhodope Massif is built of two lithostratigraphic units: the lower is an ancient granite-gneiss continental crust – Prarhodopian Group (PRG), and the upper one – a Neoproterozoic metamorphosed volcano-sedimentary rock complex – Rhodopian Group (RG). The lower stratigraphic levels of the RG are occupied by an ophiolitic association consisting of serpentinites, amphibolites, and metagabbros. The serpentinites constantly occupy the same level between the continental gneisses surface of the PRG and the base of the RG. The high degree of serpentinization (85–95%) indicates low temperature hydration metamorphism on the surface of an ultrabasic ocean plate. The formation of the Rhodope ophiolitic association has taken place in a Neoproterozoic supra-subduction zone in three stages: a. serpentinization at the ocean floor; b. obduction of serpentinite fragments, scraped from soft and plastic hydrated coat of the sliding ultrabasic plate; c. SSZ-type autochthonous Neoproterozoic (610–566 Ma) basic volcanism, including and covering serpentinite bodies. This determines a heterogeneous nature of the ophiolitic association. The lower granite-gneiss complex – PRG may have been a part of some microcontinent after the breaking of the supercontinent Rodinia. The formation of a supra-subduction zone – SSZ and the obduction of serpentinite fragments started during ocean closure preceding the amalgamation of supercontinent Gondwana.


2017 ◽  
Vol 112 (3) ◽  
pp. 393-413 ◽  
Author(s):  
Bibhuti Gogoi ◽  
Ashima Saikia ◽  
Mansoor Ahmad ◽  
Talat Ahmad

2021 ◽  
Vol 57 ◽  
pp. 239-273
Author(s):  
Allan Ludman ◽  
Christopher McFarlane ◽  
Amber T.H. Whittaker

Volcanic rocks in the Miramichi inlier in Maine occur in two areas separated by the Bottle Lake plutonic complex: the Danforth segment (Stetson Mountain Formation) north of the complex and Greenfield segment to the south (Olamon Stream Formation). Both suites are dominantly pyroclastic, with abundant andesite, dacite, and rhyolite tuffs and subordinate lavas, breccias, and agglomerates. Rare basaltic tuffs and a small area of basaltic tuffs, agglomerates, and lavas are restricted to the Greenfield segment. U–Pb zircon geochronology dates Greenfield segment volcanism at ca. 469 Ma, the Floian–Dapingian boundary between the Lower and Middle Ordovician. Chemical analyses reveal a calc-alkaline suite erupted in a continental volcanic arc, either the Meductic or earliest Balmoral phase of Popelogan arc activity. The Maine Miramichi volcanic rocks are most likely correlative with the Meductic Group volcanic suite in west-central New Brunswick. Orogen-parallel lithologic and chemical variations from New Brunswick to east-central Maine may result from eruptions at different volcanic centers. The bimodal Poplar Mountain volcanic suite at the Maine–New Brunswick border is 10–20 myr younger than the Miramichi volcanic rocks and more likely an early phase of back-arc basin rifting than a late-stage Meductic phase event. Coeval calc-alkaline arc volcanism in the Miramichi, Weeksboro–Lunksoos Lake, and Munsungun Cambrian–Ordovician inliers in Maine is not consistent with tectonic models involving northwestward migration of arc volcanism. This >150 km span cannot be explained by a single east-facing subduction zone, suggesting more than one subduction zone/arc complex in the region.


2018 ◽  
Vol 158 (1) ◽  
pp. 143-157 ◽  
Author(s):  
Guangying Feng ◽  
Yildirim Dilek ◽  
Xiaolu Niu ◽  
Fei Liu ◽  
Jingsui Yang

AbstractThe Zhangguangcai Range in the Xing’an Mongolian Orogenic Belt, NE China, contains Early Jurassic (c. 188 Ma) Dabaizigou (DBZG) porphyritic dolerite. Compared with other island-arc mafic rocks, the DBZG dolerite is characterized by high trace-element contents, relatively weak Nb and Ta enrichments, and no Zr, Hf or Ti depletions, similar to OIB-type rocks. Analysed rocks have (87Sr/86Sr)i ratios of 0.7033–0.7044, relatively uniform positive ɛNd(t) values of 2.3–3.2 and positive ɛHf(t) values of 8.5–17.1. Trace-element and isotopic modelling indicates that the DBZG mafic rocks were generated by partial melting of asthenospheric mantle under garnet- to spinel-facies conditions. The occurrence of OIB-like mafic intrusion suggests significant upwelling of the asthenosphere in response to lithospheric attenuation caused by continental rifting. These processes occurred in an incipient continental back-arc environment in the upper plate of a palaeo-Pacific slab subducting W–NW beneath East Asia.


2004 ◽  
Vol 175 (5) ◽  
pp. 443-460 ◽  
Author(s):  
Rodolfo A. Tamayo* ◽  
René C. Maury* ◽  
Graciano P. Yumul ◽  
Mireille Polvé ◽  
Joseph Cotten ◽  
...  

Abstract The basement complexes of the Philippine archipelago include at least 20 ophiolites and ophiolitic complexes. These complexes are characterised by volcanic sequences displaying geochemical compositions similar to those observed in MORB, transitional MORB-island arc tholeiites and arc volcanic rocks originating from modern Pacific-type oceans, back-arc basins and island arcs. Ocean island basalt-like rocks are rarely encountered in the volcanic sequences. The gabbros from the ophiolites contain clinopyroxenes and plagioclases showing a wide range of XMg and An values, respectively. Some of these gabbros exhibit mineral chemistries suggesting their derivation from basaltic liquids formed from mantle sources that underwent either high degrees of partial melting or several partial melting episodes. Moreover, some of the gabbros display a crystallization sequence where orthopyroxene and clinopyroxene appeared before plagioclase. The major element compositions of coexisting orthopyroxenes and olivines from the mantle peridotites are consistent with low to high degrees of partial melting. Accessory spinels in these peridotites display a wide range of XCr values as well with some of them above the empirical upper limit of 0.6 often observed in most modern mid-oceanic ridge (MOR) mantle rocks. Co-existing olivines and spinels from the peridotites also exhibit compositions suggesting that they lastly equilibrated under oxidizing mantle conditions. The juxtaposition of volcanic rocks showing affinities with modern MOR and island arc environments suggests that most of the volcanic sequences in Philippine ophiolites formed in subduction-related geodynamic settings. Similarly, their associated gabbros and peridotites display mineralogical characteristics and mineral chemistries consistent with their derivation from modern supra-subduction zone-like environments. Alternatively, these rocks could have, in part, evolved in a supra-subduction zone even though they originated from a MOR-like setting. A simplified scenario regarding the early geodynamic evolution of the Philippines is proposed on the basis of the geochemical signatures of the ophiolites, their ages of formation and the ages and origins of the oceanic basins actually bounding the archipelago, including basins presumed to be now totally consumed. This scenario envisages the early development of the archipelago to be largely dominated by the opening and closing of oceanic basins. Fragments of these basins provided the substratum on top of which the Cretaceous to Recent volcanic arcs of the Philippines were emplaced.


Sign in / Sign up

Export Citation Format

Share Document