A Rapid and Accurate Non Extractive Procedure For Analyzing Monocrotophos In Environmental Samples By Spectrophotometry

2021 ◽  
Vol 30 (1) ◽  
pp. 66-73
Author(s):  
Kalpana Wani ◽  
Prashant Mundeja ◽  
Mamta Nirmal ◽  
Vindhiya Patel ◽  
Raisa Khatoon ◽  
...  

An organophosphorous insecticide monocrotophos is increasingly being utilized in agriculture to control insects on a broad range of crops. In this study a new reaction system using spectrophotometric method for quantitative determination of monocrotophos is proposed. The method is based on the bromination of monocrotophos to form dibromomonocrotophos which react with Potassium iodide-Potassium iodate mixture in the presence of leuco malachite green (LMG) to form a water soluble greenish blue colored complex. The change in absorbance as a criterion of the bromination reaction progress was followed spectrophotometrically. To obtain t he maximum sensitivity the effective reaction variables were optimized. The absorbance maximum was observed at 620 nm. Under optimized experimental conditions calibration graph was linear over the range of 10.0-60.0 µg. The molar absorptivity of the colored system is 3.66×104 L mol-1 cm-1 and sandell’s sensitivity is 0.25×10-2 µg cm-2. The calculated detection limit was 0.44 µg mL-1. The interfering effect of various species was also investigated. The present method was successfully applied to the analysis of monocrotophos in different environmental and water samples.


2009 ◽  
Vol 6 (3) ◽  
pp. 570-577
Author(s):  
Baghdad Science Journal

Nitroso-R-salt is proposed as a sensitive spectrophotometric reagent for the determination of paracetamol in aqueous solution. The method is based on the reaction of paracetamol with iron(III) and subsequent reaction with nitroso-R-salt to yield a green colored complex with maximum absorption at 720 nm. Optimization of the experimental conditions was described. The calibration graph was linear in the concentration range of 0.1 – 2.0 ?g mL-1 paracetamol with a molar absorptivity of 6.9 × 104 L mol-1 cm-1. The method was successfully applied to the determination of paracetamol in pharmaceutical preparations without any interference from common excipients. The method has been statistically evaluated with British Pharmacopoeia method and no statistical difference between methods was found at the 95% confidence level.



2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Ali Mohammad Akhoundi-Khalafi ◽  
Masoud Reza Shishehbore

Dexamethasone is a type of steroidal medications that is prescribed in many cases. In this study, a new reaction system using kinetic spectrophotometric method for quantitative determination of dexamethasone is proposed. The method is based on the catalytic effect of dexamethasone on the oxidation of Orange G by bromate in acidic media. The change in absorbance as a criterion of the oxidation reaction progress was followed spectrophotometrically. To obtain the maximum sensitivity, the effective reaction variables were optimized. Under optimized experimental conditions, calibration graph was linear over the range 0.2–54.0 mg L−1. The calculated detection limit (3sb/m) was 0.14 mg L−1for six replicate determinations of blank signal. The interfering effect of various species was also investigated. The present method was successfully applied for the determination of dexamethasone in pharmaceutical and biological samples satisfactorily.



2010 ◽  
Vol 16 (1) ◽  
pp. 97-102 ◽  
Author(s):  
Zenita Devi ◽  
K. Basavaiah ◽  
K.B. Vinay

A simple visible spectrophotometric method is described for the determination of pantoprazole sodium sesquihydrate (PSS). The method is based on the formation of a brown colored product on treating PSS with permanganate in neutral medium, the absorbance being measured at 350 nm. The experimental conditions for the assay were optimized. The absorbance is found to increase linearly with the concentration of PSS and the calibration graph is linear in the range of 2.5-40.0 ?g ml-1 with a linear regression coefficient of 0.998. The calculated molar absorptivity value is 1.27?104 l mol-1 cm-1 and the corresponding Sandel sensitivity is 0.0341 ?g cm-2. The limits of detection (LOD) and quantification (LOQ) are calculated to be 0.49 and 1.47 ?g ml-1, respectively. Intra-day and inter-day accuracy expressed as relative error were better than 2.0% and the corresponding precision (RSD) was less than 2.5 %. The developed and validated method was applied to the determination of the active ingredient in a tablet dosage form and the results obtained agreed well with those of the reference method. The accuracy and reliability of the method were ascertained by performing recovery experiments via standard-addition procedure.



Author(s):  
Kanakapura Basavaiah ◽  
Nagaraju Rajendraprasad ◽  
Kalsang Tharpa ◽  
Urdigere Rangachar Anilkumar ◽  
Salamara Ganeshbhat Hiriyanna ◽  
...  

Titrimetric and spectrophotometric assay of pantoprazole sodium (PPS) using permanganate as the oxidimetric reagent is described. In titrimetry, PPS is treated with a measured excess of permanganate in H2SO4 medium followed by the determination of unreacted oxidant by back titrating with a standard iron(II) solution. Spectrophotometry involves addition of a known excess of permanganate to PPS in H2SO4 medium followed by the measurement of absorbance of the residual permanganate at 545 nm. In both the methods, the amount of permanganate reacted corresponds to the PPS content. Experimental conditions that provide wide linear range, maximum sensitivity and selectivity, and accuracy and precisions have been optimized. In titrimetry, the calculations are based on a 1:1 (PPS : KMnO4) reaction stoichiometry and the method is applicable over 1.0-7.0 mg range. In spectrophotometry, Beer’s law is obeyed over the concentration range 15.0-150.0 µg mL-1. The linear regression equation of the calibration graph is A = 0.78 + 0.005 C with a regression coefficient (r) of 0.9982 (n = 11). The apparent molar absorptivity is calculated to be 2.213 × 103 l mol-1cm-1 and the Sandell sensitivity is 0.1954 µg cm-2. The limits of detection (LOD) and quantification (LOQ) calculated as per the ICH guidelines are 0.73 and 2.21 µg mL-1, respectively. Accuracy and precision of the assays were determined by computing the intra-day and inter-day variations at three different levels of PPS; the intra-day and inter-day RSD was < 3.09 % and the accuracy was better than 3.5 %. The methods were successfully applied to the determination of PPS in three different brands of tablets with good accuracy and precision, and without detectable interference by excipients. The accuracy was further ascertained by placebo blank and synthetic mixture analyses and also by recovery experiments via standard-addition procedure.



Author(s):  
RUAA MUAYAD MAHMOOD ◽  
HAMSA MUNAM YASSEN ◽  
SAMAR , NAJWA ISSAC ABDULLA AHMED DARWEESH ◽  
NAJWA ISSAC ABDULLA

Simple, rapid and sensitive extractive spectrophotometric method is presented for the determination of glibenclamide (Glb) based on the formation of ion-pair complex between the Glb and anionic dye, methyl orange (MO) at pH 4. The yellow colored complex formed was quantitatively extracted into dichloromethane and measured at 426 nm. The colored product obeyed Beer’s law in the concentration range of (0.5-40) μg.ml-1. The value of molar absorptivity obtained from Beer’s data was found to be 31122 L.mol-1.cm-1, Sandell’s sensitivity value was calculated to be 0.0159 μg.cm-2, while the limits of detection (LOD) and quantification (LOQ) were found to be 0.1086 and 0.3292 μg.ml-1, respectively. The stoichiometry of the complex created between the Glb and MO was 1:1 as determined via Job’s method of continuous variation and mole ratio method. The method was successfully applied for the analysis of pharmaceutical formulation.



2018 ◽  
Vol 33 (2) ◽  
pp. 21
Author(s):  
Kanakapura Basavaiah ◽  
Okram Zenita Devi

Two sensitive spectrophotometric methods are described for the determination of simvastatin (SMT) in bulk drug and in tablets. The methods are based on the oxidation of SMT by a measured excess of cerium (IV) in acid medium followed by determination of unreacted oxidant by two different reaction schemes. In one procedure (method A), the residual cerium (IV) is reacted with a fixed concentration of ferroin and the increase in absorbance is measured at 510 nm. The second approach (method B) involves thereduction of the unreacted cerium (IV) with a fixed quantity of iron (II), and the resulting iron (III) is complexed with thiocyanate and the absorbance measured at 470 nm. In both methods, the amount of cerium (IV) reacted corresponds to SMT concentration. The experimental conditions for both methods were optimized. In method A, the absorbance is found to increase linearly with SMT concentration (r = 0.9995) whereas in method B, the same decreased (r = -0.9943). The systems obey Beer’s law for 0.6-7.5 and 0.5-5.0 μg mL-1 for method A and method B, respectively. The calculated molar absorptivity values are 2.7 X 104 and 1.06 X 105 Lmol-1 cm-1, respectively; and the corresponding sandel sensitivity values are 0.0153 and 0.0039μg cm-2, respectively. The limit of detection (LOD) and quantification (LOQ) are reported for both methods. Intra-day and inter-day precision, and accuracy of the methods were established as per the current ICH guidelines. The methods were successfully applied to the determination of SMT in tablets and the results were statistically compared with those of the reference method by applying the Student’s t-test and F-test. No interference was observed from the common excipients added to tablets. The accuracy and validity of the methods were further ascertained by performing recovery experiments via standard addition procedure.



Author(s):  
MONIR Z. SAAD ◽  
ATEF AMER ◽  
KHALED ELGENDY ◽  
BASEM ELGENDY

Objective: Two simple, sensitive and accurate spectrophotometric methods have been developed for the determination of sofosbuvir (SOF) and daclatasvir (DAC) in pure forms and pharmaceutical formulations. Methods: The proposed methods are based on the oxidation of SOF and DAC by a known excess of cerium(IV) ammonium nitrate in sulphuric acid medium followed by determination of unreacted cerium(IV) by adding a fixed amount of indigo carmine (IC) and alizarin red S (ARS) dyes followed by measuring the absorbance at 610 and 360 nm, respectively. The experimental conditions affecting the reaction were studied and optimized. Results: The beer’s law was obeyed in the concentration ranges of 0.2-3.0, 0.2-4.0 for SOF and 0.5-4.5 and 0.5-5.0 μg/ml for DAC using IC and ARS methods, respectively with a correlation coefficient ≥ 0.9991. The calculated molar absorptivity values are 2.354 × 104, 1.933 × 104 for SOF and 1.786 × 104 and 2.015 × 104 L/mol. cm for DAC using IC and ARS methods, respectively u. The limits of detection and quantification are also reported. Intra-day and inter-day precision and accuracy of the methods have been evaluated. Conclusion: The methods were successfully applied to the assay of SOF and DAC in tablets and the results were statistically compared with those of the reference method by applying Student’s t-test and F-test. No interference was observed from the common tablet excipients. The accuracy and reliability of the methods were further ascertained by performing recovery studies using the standard addition method.



1985 ◽  
Vol 31 (8) ◽  
pp. 1310-1313 ◽  
Author(s):  
R Homsher ◽  
B Zak

Abstract Of two sensitive complexometric reagents for the colorimetry of serum zinc that we investigated, one, 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Br-PADAP), was found to be a potentially useful compound for trace-metal determinations. It has a high molar absorptivity (120 000 L mol-1 cm-1) but is not convenient to use because it is not very soluble in water. The other reagent, a related pyridylazo compound, is 2-(5-bromo-2-pyridylazo)-5-(N-n-propyl-N-3-sulfopropylamino)phenol (5-BR-PAPS). It seems better suited for use in routine zinc determinations because, besides being water soluble, it has a higher molar absorptivity, 130 000 L mol-1 cm-1. Results by the proposed method developed with 5-Br-PAPS correlated well with those by atomic absorption spectrophotometry. The between-run CV for control sera was less than 5%; the within-run CV (same controls) was less than 4%.



2011 ◽  
Vol 8 (1) ◽  
pp. 217-225 ◽  
Author(s):  
S. Lakshmi Narayana ◽  
C. Ramachandraiah ◽  
A. Varada Reddy ◽  
Dongyeun Lee ◽  
Jaesool Shim

A simple, rapid, sensitive and inexpensive method has been developed for the determination of trace amounts of palladium(II) using 3,4-dihydroxybenzaldehydeisonicotinoylhydrazone (3,4-DHBINH). The metal ion gives a yellow colored complex with 3,4-DHBINH in acetate buffer of pH 3.0 with 1:1 (metal: ligand) composition. The complex shows maximum absorption at 380 nm. Beer’s law is obeyed in the range 0.5-20.0 ppm of Pd(II). The molar absorptivity, Sandell’s sensitivity and detection limit were found to be 0.53×104L mol-1cm-1, 0.02 μg cm-2and 0.0948 μg mL-1, respectively. The correlation coefficient and regression coefficient of the Pd(II)-3,4-DHBINH complex were 1.08 and 0.04 respectively. Major cations and anions did not show any interference. Anti-microbial activity of the Pd(II)-3,4-DHBINH has been studied. The developed method has been successfully applied to the analysis of Pd(II) in spiked samples. Comparing the results with those obtained using an atomic absorption spectrophotometer tested the validity of the method



2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Pavagada J. Ramesh ◽  
Kanakapura Basavaiah ◽  
Cijo M. Xavier ◽  
Kudige N. Prashanth ◽  
Madihalli S. Raghu ◽  
...  

Titrimetric and spectrophotometric assay of ganciclovir (GNC) is described using cerium(IV) sulphate as the oxidimetric reagent. The methods are based on the oxidation of GNC with a measured excess of cerium(IV) sulphate in acid medium followed by determination of the unreacted oxidant by two different reaction schemes. In titrimetry, the unreacted oxidant was determined by back titration with ferrous ammonium sulphate (FAS) in sulphuric acid medium, and spectrophotometry involves the reaction of residual cerium(IV) with p-DMAB to form brownish-coloured p-dimethylamino quinoneimine whose absorbance was measured at 460 nm. In both methods, the amount of cerium(IV) sulphate reacted corresponds to GNC concentration. Titrimetry is applicable over 3–10 mg range where as, in spcetrophotometry, the calibration graph is linear over the range of 2–10 μg mL−1 and the calculated molar absorptivity value is  L mol−1 cm−1. The validity of the proposed methods was tested by analyzing pure and dosage forms containing GNC. Statistical treatment of the results reflects that the proposed procedures are precise, accurate, and easily applicable for the determination of GNC pure form and in pharmaceutical formulations.



Sign in / Sign up

Export Citation Format

Share Document