MICROCIRCULATION ALTERATIONS IN CERVICAL MUCOSA IN PRECANCEROUS DISEASES

2021 ◽  
Vol 26 (1) ◽  
pp. 40-43
Author(s):  
N. P. Lapochkina ◽  
P. M. Jalalova ◽  
Т. V. Rotaru
Keyword(s):  
1973 ◽  
Vol 36 (5) ◽  
pp. 936-940 ◽  
Author(s):  
R. J. Wordinger ◽  
J. B. Ramsey ◽  
J. F. Dickey ◽  
J. R. Hill

Author(s):  
Nelson Perdigão

The dark proteome as we define it, is the part of the proteome where 3D structure has not been observed either by homology modeling or by experimental characterization in the protein universe. From the 550.116 proteins available in Swiss-Prot (as of July 2016) 43.2% of the Eukarya universe and 49.2% of the Virus universe are part of the dark proteome. In Bacteria and Archaea, the percentage of the dark proteome presence is significantly less, with 12.6% and 13.3% respectively. In this work, we present the map of the dark proteome in Human and in other model organisms. The most significant result is that around 40%- 50% of the proteome of these organisms are still in the dark, where the higher percentages belong to higher eukaryotes (mouse and human organisms). Due to the amount of darkness present in the human organism being more than 50%, deeper studies were made, including the identification of ‘dark’ genes that are responsible for the production of the so-called dark proteins, as well as, the identification of the ‘dark’ organs where dark proteins are over represented, namely heart, cervical mucosa and natural killer cells. This is a step forward in the direction of the human dark proteome.


2019 ◽  
Vol 8 (2) ◽  
pp. 8 ◽  
Author(s):  
Nelson Perdigão ◽  
Agostinho Rosa

The dark proteome, as we define it, is the part of the proteome where 3D structure has not been observed either by homology modeling or by experimental characterization in the protein universe. From the 550.116 proteins available in Swiss-Prot (as of July 2016), 43.2% of the eukarya universe and 49.2% of the virus universe are part of the dark proteome. In bacteria and archaea, the percentage of the dark proteome presence is significantly less, at 12.6% and 13.3% respectively. In this work, we present a necessary step to complete the dark proteome picture by introducing the map of the dark proteome in the human and in other model organisms of special importance to mankind. The most significant result is that around 40% to 50% of the proteome of these organisms are still in the dark, where the higher percentages belong to higher eukaryotes (mouse and human organisms). Due to the amount of darkness present in the human organism being more than 50%, deeper studies were made, including the identification of ‘dark’ genes that are responsible for the production of so-called dark proteins, as well as the identification of the ‘dark’ tissues where dark proteins are over represented, namely, the heart, cervical mucosa, and natural killer cells. This is a step forward in the direction of gaining a deeper knowledge of the human dark proteome.


2016 ◽  
Vol 60 (9) ◽  
pp. 5459-5466 ◽  
Author(s):  
Guillermo Villegas ◽  
Giulia Calenda ◽  
Shimin Zhang ◽  
Olga Mizenina ◽  
Kyle Kleinbeck ◽  
...  

ABSTRACTOur recent phase 1 trial demonstrated that PC-1005 gel containing 50 μM MIV-150, 14 mM zinc acetate dihydrate, and carrageenan (CG) applied daily vaginally for 14 days is safe and well tolerated. Importantly, cervicovaginal lavage fluid samples (CVLs) collected 4 or 24 h after the last gel application inhibited HIV-1 and human papillomavirus (HPV) in cell-based assays in a dose-dependent manner (MIV-150 for HIV-1 and CG for HPV). Herein we aimed to determine the anti-HIV and anti-herpes simplex virus 2 (anti-HSV-2) activity of PC-1005 in human cervical explants afterin vitroexposure to the gel and to CVLs from participants in the phase 1 trial. Single HIV-1BaLinfection and HIV-1BaL–HSV-2 coinfection explant models were utilized. Coinfection with HSV-2 enhanced tissue HIV-1BaLinfection.In vitroexposure to PC-1005 protected cervical mucosa against HIV-1BaL(up to a 1:300 dilution) in single-challenge and cochallenge models. CG gel (PC-525) provided some barrier effect against HIV-1BaLat the 1:100 dilution in a single-challenge model but not in the cochallenge model. Both PC-1005 and PC-525 at the 1:100 dilution inhibited HSV-2 infection, pointing to a CG-mediated protection. MIV-150 and CG in CVLs inhibited HIV (single-challenge or cochallenge models) and HSV-2 infections in explants in a dose-dependent manner (P< 0.05). Stronger inhibition of HIV-1 infection by CVLs collected 4 h after the last gel administration was observed compared to infection detected in the presence of baseline CVLs. The anti-HIV and anti-HSV-2 activity of PC-1005 gelin vitroand CVLs in human ectocervical explants supports the further development of PC-1005 gel as a broad-spectrum on-demand microbicide.


2005 ◽  
Vol 14 (2) ◽  
pp. 90-94 ◽  
Author(s):  
M.R. Ahmadi ◽  
A. Khodakaram Tafti ◽  
S. Nazifi ◽  
H.R. Ghaisari

2000 ◽  
Vol 24 (1) ◽  
pp. 62-67 ◽  
Author(s):  
Janneke H. H. M. van de Wijgert ◽  
Zvavahera M. Chirenje ◽  
Virginia Iliff ◽  
Michael T. Mbizvo ◽  
Peter R. Mason ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document