Effect of Elongation on the Proton Magnetic Resonance of Natural Rubber

1957 ◽  
Vol 30 (2) ◽  
pp. 528-530
Author(s):  
Keichi Oshima ◽  
Hazime Kusumoto

Abstract Several authors have already reported their studies on natural rubber by the method of proton magnetic resonance. However, since there has been little work on the effect of elongation on proton magnetic resonance absorption, we present our investigation on the proton magnetic resonance absorption of stretched samples of vulcanized natural rubber. For this experiment a large permanent magnet shown in Figure 1 was constructed. The magnetic field strength was 6090 gauss at the center of the gap at 18° C. The magnet had a field inhomogeneity of about 0.01 gauss in a 0.2 cc. sample. The derivatives of the resonance line were recorded at fixed frequency, changing the magnetic field linearly in time with an automatic electronic bias control. Control of the temperature from liquid nitrogen to room temperature was performed by a cryostat similar to that described by Gutowsky.

1969 ◽  
Vol 47 (15) ◽  
pp. 1557-1562 ◽  
Author(s):  
R. J. Atkinson ◽  
C. V. Stager

The nuclear magnetic resonance of 31P has been observed in single crystals of Mn2P2O7 at room temperature. The paramagnetic shift of the 31P resonance from γH0 has been determined for rotations of the magnetic field in three principal planes. The isotropic component of the shift indicates the presence of 0.647 ± 0.01% of a single unpaired s electron on the phosphorus ion.


2014 ◽  
Vol 1 (1) ◽  
Author(s):  
G. Tosolini ◽  
J. M. Michalik ◽  
R. Córdoba ◽  
J. M. de Teresa ◽  
F. Pérez-Murano ◽  
...  

AbstractWe present the magnetic characterization of cobalt wires grown by focused electron beam-induced deposition (FEBID) and studied using static piezoresistive cantilever magnetometry. We have used previously developed high force sensitive submicron-thick silicon piezoresistive cantilevers. High quality polycrystalline cobalt microwires have been grown by FEBID onto the free end of the cantilevers using dual beam equipment. In the presence of an external magnetic field, the magnetic cobalt wires become magnetized, which leads to the magnetic field dependent static deflection of the cantilevers. We show that the piezoresistive signal from the cantilevers, corresponding to a maximum force of about 1 nN, can be measured as a function of the applied magnetic field with a good signal to noise ratio at room temperature. The results highlight the flexibility of the FEBID technique for the growth of magnetic structures on specific substrates, in this case piezoresistive cantilevers.


1951 ◽  
Vol 19 (8) ◽  
pp. 1069-1069 ◽  
Author(s):  
Yoshinobu Kakiuchi ◽  
Hisao Shono ◽  
Hachiro Komatsu ◽  
Kunihiko Kigoshi

1978 ◽  
Vol 33 (7) ◽  
pp. 749-760 ◽  
Author(s):  
G. E. J. Eggermont ◽  
P. W. Hermans ◽  
L. J. F. Hermans ◽  
H. F. P. Knaap ◽  
J. J. M. Beenakker

In a rarefied polyatomic gas streaming through a rectangular channel, an external magnetic field produces a heat flux perpendicular to the flow direction. Experiments on this “viscom agnetic heat flux” have been performed for CO, N2, CH4 and HD at room temperature, with different orientations of the magnetic field. Such measurements enable one to separate the boundary layer contribution from the purely bulk contribution by means of the theory recently developed by Vestner. Very good agreement is found between the experimentally determined bulk contribution and the theoretical Burnett value for CO, N2 and CH4 , yet the behavior of HD is found to be anomalous.


2018 ◽  
Vol 2 (4) ◽  
pp. 68 ◽  
Author(s):  
Emil Chibowski ◽  
Aleksandra Szcześ ◽  
Lucyna Hołysz

Using neodymium ring magnets (0.5–0.65 T), the experiments on the magnetic field (MF) effects on water evaporation rate and surface tension were performed at room temperature (22–24 °C). In accordance with the literature data, the enhanced evaporation rates were observed in the experiments conducted in a period of several days or weeks. However, the evaporated amounts of water (up to 440 mg over 150 min) in particular experiments differed. The evaporated amounts depended partially on which pole of the ring magnet was directed up. The relatively strong MF (0.65 T) caused a slight decrease in surface tension (−2.11 mN/m) which lasted longer than 60 min and the memory effect vanished slowly. The surface tension data reduced by the MF action are reported in the literature, although contrary results can be also found. The observed effects can be explained based on literature data of molecular simulations and the suggestion that MF affects the hydrogen bonds of intra- and inter-clusters of water molecules, possibly even causing breakage some of them. The Lorentz force influence is also considered. These mechanisms are discussed in the paper.


1970 ◽  
Vol 48 (18) ◽  
pp. 2839-2842 ◽  
Author(s):  
J. Peeling ◽  
T. Schaefer ◽  
C. M. Wong

At room temperature the proton magnetic resonance spectrum of α,α-dichloro-2,4,6-tribromotoluene is ABX where the methine proton in the sidechain is X and is lying in the plane of the aromatic ring. At higher temperatures the ring proton spectrum, AB, broadens and eventually collapses to yield an A2X spectrum. From an analysis of the ring proton line shapes the barrier to rotation of the dichloromethyl group about the sp2–sp3 carbon–carbon bond is obtained; ΔG* = 17.5 ± 0.1 kcal/mole at 304°K, ΔH* = 15.67 ± 0.08 kcal/mole, ΔS* = −7 e.u., Ea = 16.38 ± 0.08 kcal/mole, log A = 11.78 ± 0.23 where the least squares errors given should probably be multiplied by a factor of from 3 to 5 to take possible systematic errors into account. The barrier is about 2 kcal/mole higher than in α,α,2,4,6-pentachlorotoluene. The barrier to rotation arises from the conformation in which chlorine and bromine atoms are eclipsed.


Sign in / Sign up

Export Citation Format

Share Document