scholarly journals Optimization and Modeling of Gamma Aminobutyric Acid (GABA) Extraction Conditions from Lactobacillus brevis IRBC10818 Affected by Heat Shock by Response Surface Methodology

2021 ◽  
Vol 18 (118) ◽  
pp. 167-180
Author(s):  
mahboobe rezaei ◽  
younes ghasemi ◽  
Anousheh Sharifan ◽  
hossein bakhoda ◽  
◽  
...  
Author(s):  
Sharmineh Sharafi ◽  
Leila Nateghi

Background and Objectives: Gamma-aminobutyric acid (GABA) is a non-protein four-carbon amino acid that has many physiological properties, including reducing blood pressure, accelerating protein synthesis in the brain, and treatment of insomnia and depression. This amino acid is produced by a number of lactic acid bacteria, fungi and yeasts. The objective of the present study was to identify probiotic bacteria with the maximum ability to generate GABA and optimize the bacterial culture conditions having the highest potential for GABA production. Materials and Methods: The potential of GABA production by Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus rhamnosus, Lactobacillus casei, Streptococcus thermophilus, Lactobacillus brevis and Lactococcus lactis ssp. lactis in the culture medium of MRS broth was assessed by High Performance Liquid Chromatography (HPLC). In order to increase the rate of GABA produced by the bacteria having the highest potential for GABA production, the conditions of the culture medium including pH (3.5 to 6.5) "temperature (25 to 45°C), time (12 to 96 h) and glutamic acid (GA) concentration (25 to 650 mmol) were optimized by the Box-Behnken’s Response Surface Method (RSM). Results: Lactobacillus brevis had the highest potential of GABA production (5960.8 mg/l). The effect of time and GA con- centration was significant on the amount of GABA production. The best conditions of culture medium to achieve the highest amount of GABA production by Lactobacillus brevis (19960 mg/l) were temperature 34.09°C, pH 4.65, GA concentration 650 mmol and time 96 h. Conclusion: The results showed that by optimization of the culture medium conditions of probiotic bacteria we can produce more GABA in culture medium


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Atefe Ghafurian Nasab ◽  
Sayed Ali Mortazavi ◽  
Farideh Tabatabaei Yazdi ◽  
Mahboobe Sarabi Jamab

In the present research, the production potential of gamma aminobutyric acid (GABA) using Lactobacillus brevis PML1 was investigated. In addition, the microorganism viability was examined in MAN, ROGOSA, and SHARPE (MRS) after undergoing high hydrostatic pressure at 100, 200, and 300 MPa for 5, 10, and 15 min. Response surface methodology (RSM) was applied to optimize the production conditions of GABA as well as the bacteria viability. Analysis of variance (ANOVA) indicated that both the independent variables (pressure and time) significantly influenced the dependent ones (GABA and bacteria viability) ( P < 0.05 ). The optimum extraction conditions to maximize the production of GABA included the pressure of 300 MPa and the time of 15 min. The amount of the compound was quantified using thin-layer chromatography (TLC) and spectrophotometry. For the process optimization, a central composite design (CCD) was created using Design Expert with 5 replications at the center point, whereby the highest content of GABA was obtained to be 397.73 ppm which was confirmed by high performance liquid chromatography (HPLC). Moreover, scanning electron microscopy (SEM) was utilized to observe the morphological changes in the microorganism. The results revealed that not only did have Lactobacillus brevis PML1 the potential for the production of GABA under conventional conditions (control sample) but also the content of this bioactive compound could be elevated by optimizing the production parameters.


Sign in / Sign up

Export Citation Format

Share Document