scholarly journals Optimization of Gamma Aminobutyric Acid Production Using High Pressure Processing (HPP) by Lactobacillus brevis PML1

2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Atefe Ghafurian Nasab ◽  
Sayed Ali Mortazavi ◽  
Farideh Tabatabaei Yazdi ◽  
Mahboobe Sarabi Jamab

In the present research, the production potential of gamma aminobutyric acid (GABA) using Lactobacillus brevis PML1 was investigated. In addition, the microorganism viability was examined in MAN, ROGOSA, and SHARPE (MRS) after undergoing high hydrostatic pressure at 100, 200, and 300 MPa for 5, 10, and 15 min. Response surface methodology (RSM) was applied to optimize the production conditions of GABA as well as the bacteria viability. Analysis of variance (ANOVA) indicated that both the independent variables (pressure and time) significantly influenced the dependent ones (GABA and bacteria viability) ( P < 0.05 ). The optimum extraction conditions to maximize the production of GABA included the pressure of 300 MPa and the time of 15 min. The amount of the compound was quantified using thin-layer chromatography (TLC) and spectrophotometry. For the process optimization, a central composite design (CCD) was created using Design Expert with 5 replications at the center point, whereby the highest content of GABA was obtained to be 397.73 ppm which was confirmed by high performance liquid chromatography (HPLC). Moreover, scanning electron microscopy (SEM) was utilized to observe the morphological changes in the microorganism. The results revealed that not only did have Lactobacillus brevis PML1 the potential for the production of GABA under conventional conditions (control sample) but also the content of this bioactive compound could be elevated by optimizing the production parameters.

2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Chidambaram Saravana Babu ◽  
Krishnamoorthy Selvarajan Kesavanarayanan ◽  
Periyathambi Kalaivani ◽  
Vijayan Ranju ◽  
Muthiah Ramanathan

Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system which is involved in various physiological and pathological processes. The present study demonstrates a simple high-performance thin-layer chromatography (HPTLC) method which was developed for the estimation of GABA in rat brain tissue. The method was validated in terms of precision, recovery, reproducibility, and variability. Instrumental precision was found to be 0.5891% CV and reproducibility of the method was found to be 0.4141% CV. Interday and intraday precision of the method was found to be 0.9453% and 1.3236% CV, respectively. Accuracy of the method was checked by the recovery study, and the average recovery of GABA was found to be 97.98% at 40 ng and 96.15% at 80 ng levels. The present HPTLC method for GABA estimation was found to be simple, precise, reproducible, sensitive, and accurate. No doubt, this proposed method will be a useful tool for the estimation of GABA in rat brain tissue.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
E. Hunter ◽  
M. Stander ◽  
J. Kossmann ◽  
S. Chakraborty ◽  
S. Prince ◽  
...  

Abstract Objective Current global trends on natural therapeutics suggest an increasing market interest toward the use and discovery of new plant-derived therapeutic compounds, often referred to as traditional medicine (TM). The Cannabis industry is currently one such focal area receiving attention, owing to the occurrence of phytocannabinoids (pCBs) which have shown promise in health-promotion and disease prevention. However, the occurrence of pCBs in other plant species are often overlooked and rarely studied. Leonotis leonurus (L.) R. Br. is endemic to South Africa with a rich history of use in TM practices amongst indigenous people and, has been recorded to induce mild psychoactive effects akin to Cannabis. While the leaves have been well-reported to contain therapeutic phytochemicals, little information exists on the flowers. Consequently, as part of a larger research venture, we targeted the flowers of L. leonurus for the identification of potential pCB or pCB-like compounds. Results Flower extracts were separated and analyzed using high performance thin layer chromatography (HPTLC). A single pCB candidate was isolated from HPTLC plates and, using liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS), we could successfully group this compound as a fatty amide and tentatively identified as 7,10,13,16-Docosatetraenoylethanolamine (adrenoyl-EA), a known bioactive compound.


1996 ◽  
Vol 271 (6) ◽  
pp. R1707-R1712 ◽  
Author(s):  
D. Nitz ◽  
J. M. Siegel

The activity of neurons in the posterior hypothalamus (PH) is thought to contribute to the production of wakefulness and electroencephalograph desynchronization. Inactivation of neuronal activity in this area is known to induce sleep. Most PH neurons decrease unit discharge during slow-wave sleep (SWS) relative to wake and rapid eye movement sleep. In the present study, we sought to examine potential sources of inhibition or disfacilitation underlying the reduction of PH unit activity during SWS in the cat. We employed the microdialysis technique in conjunction with high-performance liquid chromatography methods for the quantification of glutamate, glycine, and gamma-aminobutyric acid (GABA) release. We found a selective increase in GABA release during SWS in the PH. Glutamate and glycine levels were unchanged across the sleep-wake cycle. microinjection of the GABAA-receptor agonist muscimol, into the same areas from which microdialysis samples were collected, increased SWS time. Our studies support the hypothesis that GABA release in the posterior hypothalamus mediates inhibition of posterior hypothalamic neurons, thereby facilitating SWS.


Sign in / Sign up

Export Citation Format

Share Document