scholarly journals Relaxing Effect of Novel Cosmetic Ingredient using Lactobacillus gasseri HDB1102 on Skin Problems Caused by Particulate Matter

2021 ◽  
Vol 27 (5) ◽  
pp. 1152-1158
Author(s):  
Seo-Jin Yang ◽  
Kyung-Min Kim ◽  
Ji-Won Song ◽  
Seung-Hun Lee

In this study, we developed Dermabiotics HDB1102 using Lactobacillus gasseri HDB1102 to relieve skin irritation caused by particulate matter (PM). L. gasseri HDB1102 was provided from cell bank and identified by 16S ribosomal RNA gene sequencing. Dermabiotics HDB1102 was manufactured by heating, centrifuging, and filtering culture medium of L. gasseri HDB1102. When 0-2.5%(v/v) Dermabiotics HDB1102 was treated, cytotoxicity on normal human epidermal keratinocytes (NHEKs) and human fibroblast was not observed by using MTT assay. The mRNA expression levels of cytochrome P450 1A1 (CYP1A1), interleukin (IL)-1β, and IL-8 on Dermabiotics HDB1102 treated cells decreased compared to PM-treated cells. Conversely, the mRNA expressions of aquaporin-3 (AQP-3), CD-44, and collagen type 1 (COL-1) on Dermabiotics HDB1102 treated cells were dose-dependent higher than those of non-treated cells. These results indicated that Dermabiotics HDB1102 have anti-inflammatory, moisturizing, and anti-wrinkle effects and could be used as a potential cosmetic ingredient to alleviate skin symptoms caused by PM.

1999 ◽  
Vol 255 (1) ◽  
pp. 64-69 ◽  
Author(s):  
Sophie Janssens ◽  
Luc Bols ◽  
Marc Vandermeeren ◽  
Guy Daneels ◽  
Marcel Borgers ◽  
...  

1999 ◽  
Vol 112 (12) ◽  
pp. 1843-1853 ◽  
Author(s):  
N. Maas-Szabowski ◽  
A. Shimotoyodome ◽  
N.E. Fusenig

Epithelial-mesenchymal interactions play an important role in regulating tissue homeostasis and repair. For skin, the regulatory mechanisms of epidermal-dermal interactions were studied in cocultures of normal human epidermal keratinocytes (NEK) and dermal fibroblasts (HDF) rendered postmitotic by alpha-irradiation (HDFi). The expression kinetics of different cytokines and their receptors with presumed signalling function in skin were determined at the RNA and protein level in mono- and cocultured NEK and HDFi. In cocultured HDFi, mRNA and protein synthesis of keratinocyte growth factor (KGF) (FGF-7) was strongly enhanced, whereas in cocultured keratinocytes interleukin (IL)-1alpha and -1beta mRNA expression increased compared to monocultures. Thus we postulated that IL-1, which had no effect on keratinocyte proliferation, induced in fibroblasts the expression of factors stimulating keratinocyte proliferation, such as KGF. The functional significance of this reciprocal modulation was substantiated by blocking experiments. Both IL-1alpha and -1beta-neutralizing antibodies and IL-1 receptor antagonist significantly reduced keratinocyte proliferation supposedly through abrogation of KGF production, because IL-1 antibodies blocked the induced KGF production. These data indicate a regulation of keratinocyte growth by a double paracrine mechanism through release of IL-1 which induces KGF in cocultured fibroblasts. Thus IL-1, in addition to its proinflammatory function in skin, may play an essential role in regulating tissue homeostasis.


Sign in / Sign up

Export Citation Format

Share Document